

>>13th Food Extrusion Seminar Oct 29/30, 2025 by Coperion · Stuttgart · Germany

Presentations

→ Agenda · Day 1 · Wednesday, Oct 29, 2025

08:45	Registration HolidayInn Stuttgart, Conference Room
09:15	Welcome/Presentation Coperion + Organisation Stefan Gebhardt & Uta Kühnen, Coperion
09:45	Twin Screw Extruder Basics Uta Kühnen, Coperion
10:30	Types, Forms and Materials of Twin Screw Elements Tobias Gaiser, Coperion
11:15	Coffee Break
11:35	Practical Session: Assembly of Twin Screw Elements Tobias Gaiser & Team, Coperion
12:30	Lunch Holiday Inn
13:30	Process Opportunities in Food Extrusion Fabian Specht, Coperion & Catherine Cooper, Baker Perkins
14:00	Feeding of Various Ingredients Beat Müller-Ranft, Coperion
14:45	Research Highlights in Food Extrusion Processing Verena Schmidt, Fraunhofer-Institut für Verfahrenstechnik u Verpackung Felix Ellwanger Karlsruher Institut für Technologie
15:00	Coffee Break
15:30	Extrusion of Meat Analogues: TVP and HMMA Tobias Gaiser, Coperion
16:15	Expansion & Die Design Christian Hüttner, Coperion & Tom Shipman, Baker Perkins
17:00	Preview Practical Sessions Coperion Test Lab and Plant Fabian Specht
17:10	End of Day 1
19:00	Dinner 'Ristorante Italiani', Ingersheimer Str. 12, 70499 Stuttgart (vis-á-vis the HolidayInn)

Subject to changes

→ Agenda · Day 2 · Thursday, Oct 30, 2025

08:15	Departure Shuttle from HolidayInn to Coperion	
08:55	Safety Briefing	
09:00	Practical Session 1: Breakfast Cereals Food Test Lab Christian Hüttner, Coperion & Tom Shipman, Baker Perkins	
09:25	Practical Session 2: HMMA Food Test Lab Tobias Gaiser, Coperion	
09:50	Practical Session 3: Samples Food Test Lab Uta Kühnen, Coperion	
10:15	Practical Session 4: Forming Extrusion of Chewing Gum Food Test Lab Patrick Gabler, Gabler	
10:40	Practical Session 5: Selecting Dies for Breakfast Cereal Design Food Test Lab Catherine Cooper, Baker Perkins	
11:05	Practical Session 6: Factory Tour Coperion factory	
11:30	Departure Shuttle from Coperion to HolidayInn	
12:15	Lunch HolidayInn	
13:00	Innovative Food Extrusion: Efficient Production of Plant-Based Alternatives at Vemiwa Michael Walk, Vemiwa	
13:30	Process Design Uta Kühnen, Coperion	
14:15	Recipe Ingredients in Food Extrusion Fabian Specht, Coperion	
15:00	Coffee Break	
15:20	Extrusion Processing of Breakfast Cereals and Its Ancillary Equipment Catherine Cooper & Tom Shipman, Baker Perkins	
16:05	Get Your Settings Right – the Impact of Extruder Settings on the Product Properties Christian Hüttner, Coperion	
16:50	Closing Remarks	
17:00	End of Seminar Day 2	

Subject to changes

Table of Content

Twin Screw Extruder Basics Uta Kühnen, Coperion	7	
Types, Forms and Materials of Twin Screw Elements Tobias Gaiser, Coperion	31	
Practical Session: Assembly of Twin Screw Eements Tobias Gaiser & Team, Coperion	51	
Process Oportunities in Food Extrusion Fabian Specht, Coperion	59	
Feeding of Various Ingredients Beat Müller-Ranft, Coperion	71	
Research Highlights in Food Extrusion Processing Abstract: Verena Schmidt, Fraunhofer-Institut für Verfahrenstechnik u Verpackung Abstract: Felix Ellwanger Karlsruher Institut für Technologie	99 100	
Extrusion of Meat Analogues: TVP and HMMA Tobias Gaiser, Coperion	101	
Expansion & Die Design Christian Hüttner, Coperion & Tom Shipman, Baker Perkins	125	
Innovative Food Extrusion: Efficient Production of Plant-Based Alternatives at Vemiwa Michael Walk, Vemiwa		
Process Design Uta Kühnen, Coperion		
Recipe Ingredients in Food Extrusion Fabian Specht, Coperion		
Extrusion Processing of Breakfast Cereals and Its Ancillary Equipment Catherine Cooper & Tom Shipman, Baker Perkins		
Get Your Settings Right – the Impact of Extruder Settings on the Product Properties Christian Hüttner, Coperion	214	

Coperion GmbH | Stuttgart | Germany

This document and all contributions and illustrations contained therein are protected by copyright. Any use there of beyond the scope of the copyright without editor's prior written consent is illegal. This shall in particular apply to translations, reproductions, micro filming and processing in electronic systems.

- 1 Introduction
- 2 Extrusion basic mechanisms
- 3 Geometry outline of twin screw extruders
- 4 Extruder components
- 5 Twin Screw Extruder process section
- 6 Ancillary equipment for process section
- 7 Pelletizer ZGF
- 8 Process control system

Introduction

Twin screw extruder basics

Definition

Extrusion (from latin extrudere = push out) to press/ squeeze a material by means of force through a small orifice.

Mechanical process

Material (at the die) in is high viscous/flowable aggregate state

Screw extrusion

- A continuous process
- Not always forced through a die
- Not always flowable / high viscous material
- Thermomechanical process

Historical

Food Extrusion

Meat grinder

~ 1830 K. Drais

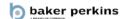
Maybe oldest and most renewed single screw food extruder

baker perkins

(coperion

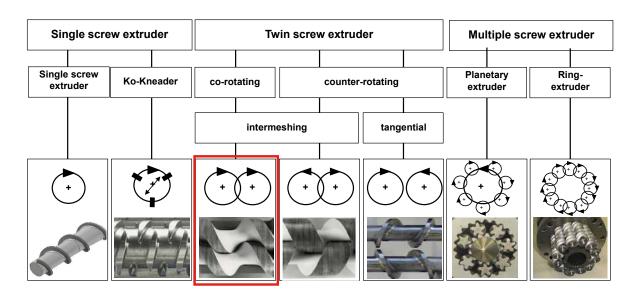
Basic components

- Inlet hopper
- Screw
- Drive
- Die plate
- Knife


Twin screw extruder basics

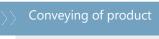
Extrusion basic mechanisms

General Working Principle of screw extrusion machines

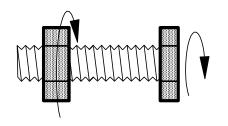


Extrusion Systems

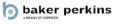
Different Concepts

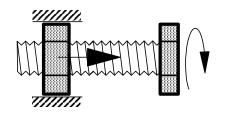

Twin screw extruder basics

Basics Extrusion systems

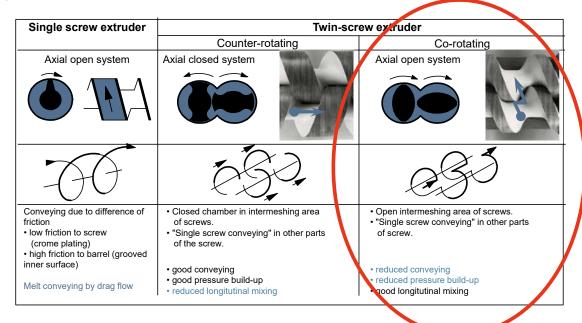

Conveying mechanism I

Principle of function


Ratio of friction between product to barrel wall and product to screw element. $\frac{\mu \ (prod \ to \ barrel)}{\mu \ (prod \ to \ screw)}$

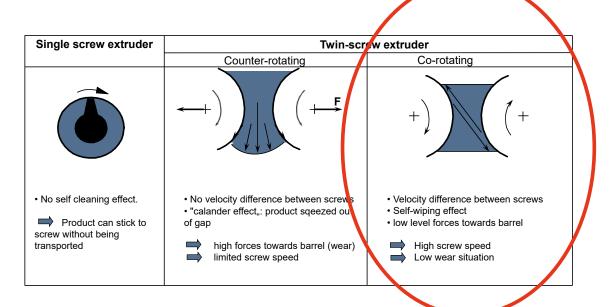

Low friction at the screw, high friction at the barrel wall (bolt / nut effect)

No transportation if product sticks to the screw element.


Good product transportation if product sticks to the barrel wall.

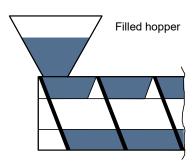
Basics Extrusion systems

Conveying mechanism II


Twin screw extruder basics

Basics Extrusion systems

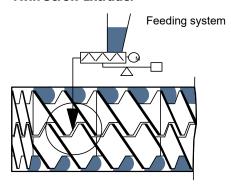
baker perkins


Self wiping (cleaning) effect

Basics Extrusion systems

Throughput and Degree of Fill

Single Screw Extruder


- Product feed out of full hopper
- No feeder necessary
- Screw channels completely filled
- Output rate = f (screw speed)

baker perkins

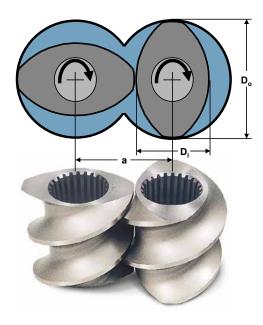
(coperion

Twin Screw Extruder

- Product feed controlled by feeding system
- Screw channels partly filled
- Output rate independent of screw speed

Twin screw extruder basics 11

Geometry outline of twin screw extruders


baker perkins

Design features of twin screw extruders

Characteristic dimensions

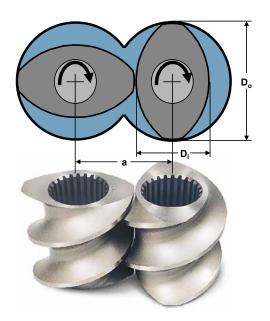
 $\mathbf{D_o}$ = Outer diameter

D_i = Inner diameter

a = Centerline distance

D_o / **D**_i = Diameter ratio determines shear, degassing and powder intake

M_d / **a**³ = Specific torque determines power density and filling degree


n = Screw speed determines shear and mixing

Twin screw extruder basics

13

Design features of Coperion ZSK

MEGAcompounder and MEGAvolume

coperion

ZSK Mv

 $D_{o} / D_{i} = 1.8$

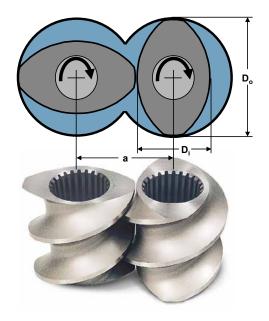
 M_d / a^3 up to 11,3 Nm/cm³

n up to 1800 rpm

ZSK Mc

 $D_0 / D_i = 1,55$

 M_d / a^3 up to 18 Nm/cm³


n up to 1200 rpm

Design features of Baker Perkins Food Extruders baker perkins

Food Extruders MPF and SBX Series

SBX - 'Solid Barrel X'

 $D_{o} / D_{i} = 1.76$

 \mathbf{M}_{d} / \mathbf{a}^{3} up to 11 Nm/cm³ for SBX65-125

n up to 1700 rpm

Solid barrel

MPF - 'Multi Purpose Food'

 $D_o / D_i = 1.76$

 \mathbf{M}_{d} / \mathbf{a}^{3} up to 11,0 Nm/cm³

n up to 1000 rpm

Clamshell barrel

Twin screw extruder basics

Geometrically similar design of process section

of the ZSK series

Screw diameter 18 to 420 mm

ZSK MEGAvolume

Screw diameter 27 to 247 mm

Geometrically similar design of process section

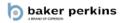
(coperion

of the Baker Perkins Food Extruders

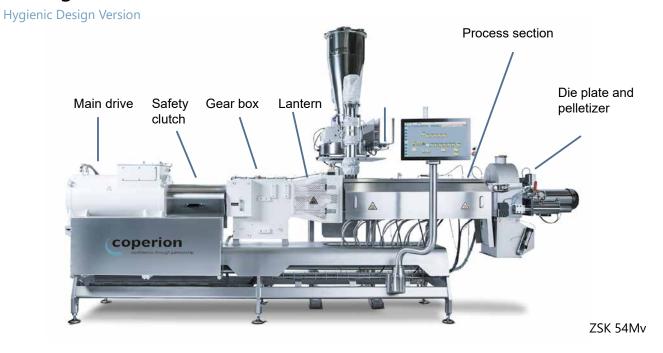
SBX Food Extruder

Screw diameter 45 to 125 mm

MPF Lab Extruder


Screw diameter 19 and 24 mm

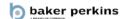
Twin screw extruder basics 17


Extruder components

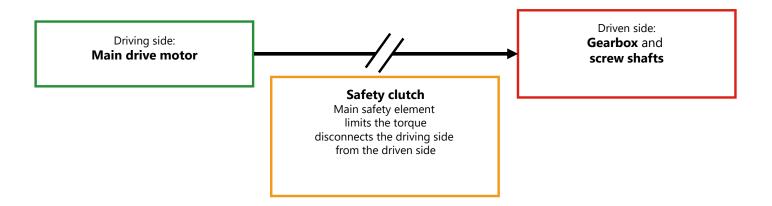
Food grade Extruder

Twin screw extruder basics 19

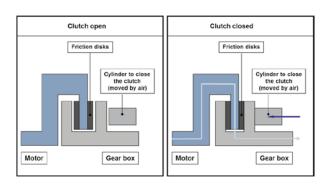
Main drive

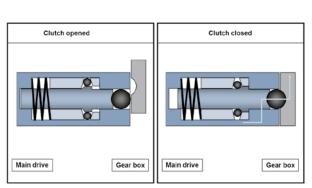

Water cooled main drive

AC drive with frequency converter Very silent Hygienic smooth surface No fan needed Small footprint


Safety clutch

Background


(coperion



Twin screw extruder basics 21

Safety clutch

Air loaded and spring loaded version

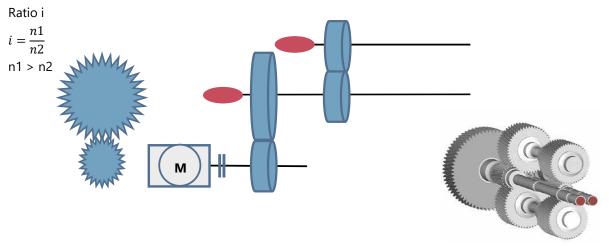
baker perkins

Safety decoupling of gearbox and processing section from main drive if torque is too high

Gearbox

Reduction and distribution

Reduction gears


n1 speed of shaft from main drive n2 speed of screw shafts

Distribution gears

Distribution to two shafts

Trust bearing of screw shafts

Only one-sided bearing of screw shafts

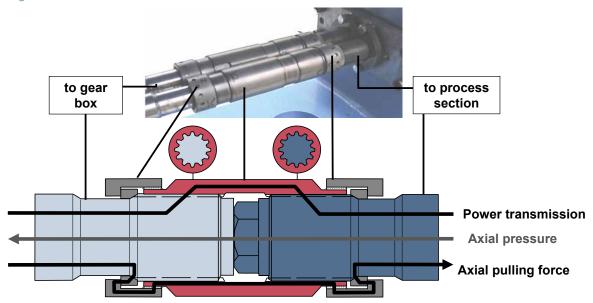
Twin screw extruder basics

23

Lantern

Coupling between gear shaft and screw shaft

to process section


to gear box

Lantern

(coperion

Coupling between gear shaft and screw shaft

Twin screw extruder basics 25

Hygienic design

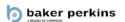
ZSK 43Mv in production site

Stainless steel base frame

Open construction

- good access
- · avoid dead spaces

Suitable for wet cleaning


Over all IP 54

Easy drainage of cleaning liquids

Clearance from floor

ZSK Food Extruder in Hygienic Design

User, cleaning and maintenance friendly design

Twin Screw Extruder process section

Hardware Components – Barrels and Screws

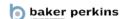
Twin screw extruder basics

The ZSK Megavolume extrusion system

baker perkins

Modular design and versatility

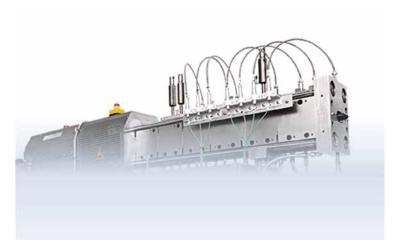
- **ZSK** = twin screw kneader
- Modular screws: single elements are threaded on a shaft
- Modular barrels: single barrels are coupled by flanges or held together by tie-rods
- Each barrel heated / cooled individually


Individual Design

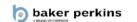
Each extruder mounted with unique configuration of components and parts

Action of the screws

Cross section of a ZSK 2 lobe system


Deeper insights

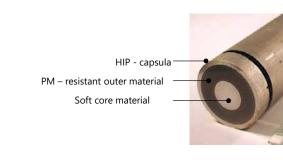
In the presentation on screw elements by Tobias Gaiser, Coperion


Twin screw extruder basics 29

Modular design of ZSK process section

ZSK 43 barrels fixed with tie rods

Metallurgical competence



Raw material for screw elements

Abrasion and/ or corrosion resistant screw elements

Powder metallurgical element with wear and corrosion resistant layer with softer core

High requirements in food extrusion

Corrosive attack: use of water, salt, flavour and aggressive (cleaning) media Abrasive attack: starch, sugar, minerals... abrasive raw materials Statutory regulations for food contact

Twin screw extruder basics 31

Metallurgical competence

Abrasion and/ or corrosion resistant barrels

Protecion against corrosion and abrasion of Extruder barrels

- Extruder barrel with corrosion and abrasion resistant liner Liner can be exchanged if worn/ barrel body can be safed
- Barrel with special welded layer in 8-boring
- Barrel with special surface
- Complete barrel out of special steel
- Barrel body corrosion resistant for hygienic cleaning of extruder outside

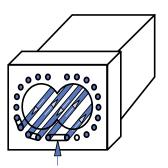
Barrel heating and cooling

Liquid cooling or tempering

Fluid tempering

- Water (pressurized max. 200 °C)
- Steam (max. 250 °C)
- Oil (max. 350 °C)

Regulated by external tempering units


Fluid cooling

- Water
- Antifreeze
- Regulated cooling impulses (extruder process control)
- Continuous flow (manually)
- < 100°C by heat transfer
- > 100°C by evaporation enthalpy (much more efficient!!)

aker perkins

(coperion

Cooling channels in barrel body

Tempering fluid

Twin screw extruder basics 33

Barrel heating and cooling

Electrical heating and pulsed water cooling

Temperature control and regulation of each singular barrel Electrical heating by 2-4 heater cartridges by resistance heating



o baker perkins

(coperion

ZSK 18Mc

Each barrel

Temperature probe Cooling water inlet/outlet Heater cartridges

Ancillary equipment for process section

Twin screw extruder basics

Feeder

Integral component of extrusion line Ensure smooth, reliable, constant to sensure a consistant extusion process

One of the most important pieces of ancillary equipment

>> Details & Insights

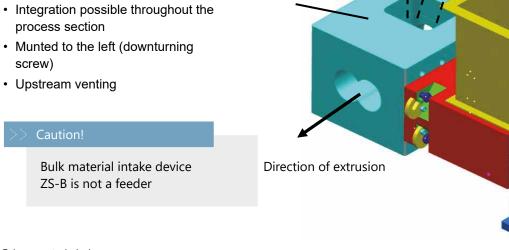
See presentation on feeding by Beat Müller-Ranft, Coperion Ktron ZSK 54Mv

baker perkins

(coperion

ZS-B twin screw sidefeeder

Upstream venting


(coperion

Bulk educt from loss-

in-weight feeder

for bulk material feed

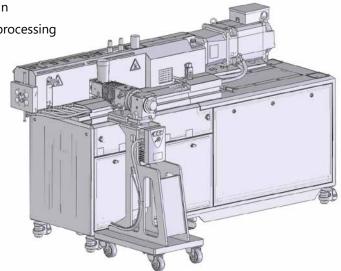
- · Increase of powder intake
- · Smooth feed in
- · Intake into plastified mass

Extruder barrel

Twin screw extruder basics

37

Lab Extruder ZSK 27Mv


o baker perkins

with ZS-B 25 sidefeeder

ZS-B sidefeeder in trolley design Attached to the middle of the processing

section

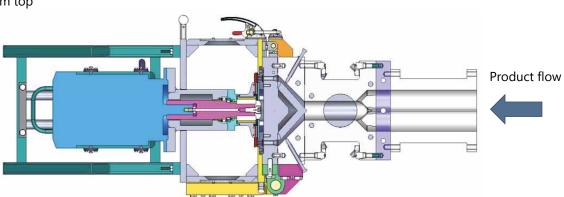
(coperion

Direct die face cut

Discharge for most food extrusion processes

Pelletizer ZGF and Cutter cage SBX

baker perkins


Twin screw extruder basics

Food pelletizer ZGF

General design

Hinged pelletizer for easy access

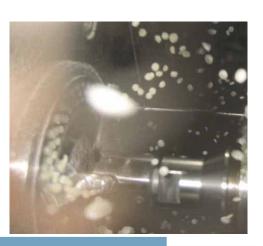
Cut view from top

Food pelletizer ZGF

Important features

Easy access to die plate and screws due to hinged design 3-D adjustment of knifes to die plate for very precize cut Vernier adjustment of knifes/ clearance while running Sliding pelletizer for easy start up and stop Full safety sampeling flap Splash water protected up to IP 65 Different sizes for different products and throughput rates

(coperion


Twin screw extruder basics

Pelletizing ZGF 70

Forming by die shape and cutting

baker perkins (coperion

Details & Insights about die forming

See presentation on expansion & die design by Christian Hüttner, Coperion & Tom Shipman, Baker Perkins

Pelletizer ZGF 125

baker perkins

(coperion

Mounted onto ZSK 98 Production of breakfast cereals

Twin screw extruder basics 43

SBX65 Extruder with Cutter Cage

See presentation on cereal extrusion and ancillaries by Catherine Cooper and Tom Shipman, Baker Perkins

Process control system

Twin screw extruder basics

Control cabinet separate from extruder

For better sanitation, apart in separate room

- Control cabinet for extruder and ancillary equipment
- Frequency converter for main drive HMI close to processing section

Junction boxes at extruder in stainless steel

Compact extruder

baker perkins

(coperion

Control cabinet attached to extruder

ZSK 27Mv

Food and Pharma light version

Control cabinet and frequency converter underneath drive section

Touch screen panel positioned on control cabinet Ideal for lab purposes and r&d works

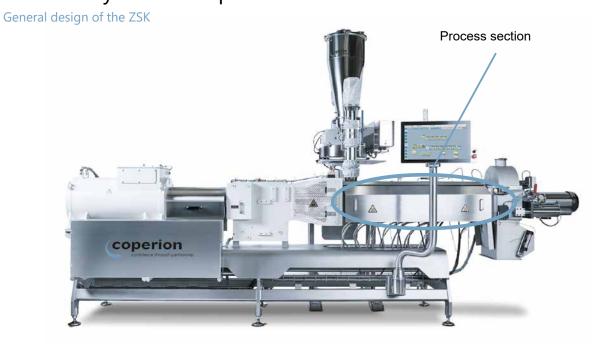
coperion

Types, forms and materials of screw elements

Tobias Gaiser, Process Engineer Food Extrusion

- 1 General layout of the process section
- 2 Conveying elements
- 3 Kneading elements
- 4 Mixing elements
- 5 Combining effects
- 6 Material

Types, forms and materials of screw elements



General layout of the process section

Types, forms and materials of screw elements

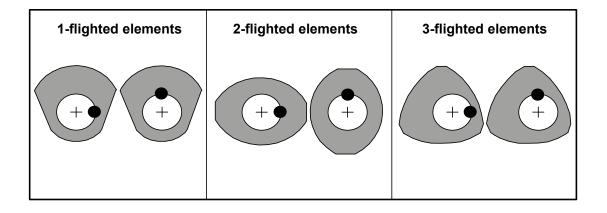
General layout of the process section

Types, forms and materials of screw elements

General layout of the process section

General design of the ZSK

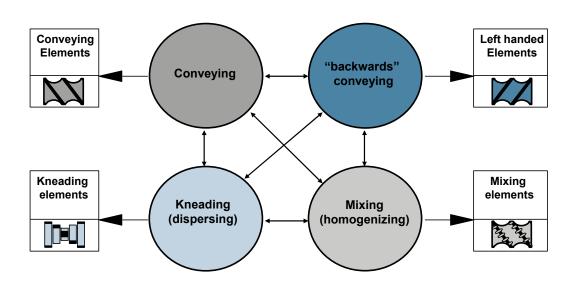
- **ZSK** = twin screw kneader
- Modular screws: single elements are threaded on a shaft
- Modular barrels: single barrels are coupled by flanges or held together by tie-rods
- · Each barrel heated / cooled individually
- This allows individual design of each extruder



Types, forms and materials of screw elements

General layout of the process section

Element design



Assembly of Screw Elements 6

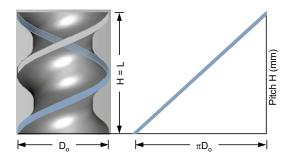
General layout of the process section

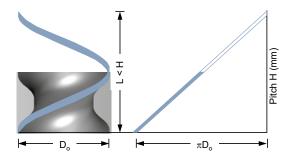
Basic effects of screw elements

Types, forms and materials of screw elements

7

Conveying elements

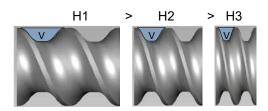

Types, forms and materials of screw elements


Definition of pitch and length

Definition Pitch H: axial length L [mm] required to complete one helix of the screw

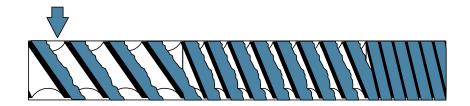
If L<H (e.g. half elements)
the helix has to be completed theoretically in
order to get the value of the pitch.

Types, forms and materials of screw elements


9

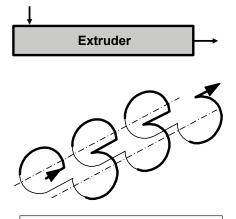
Conveying elements

Free volume in the screw channel


The pitch H of a conveying element determins - at same cross section of the profile - the free volume V of the screw channel.

Types, forms and materials of screw elements

Fill factor


With reduced pitch, the volume in the screw channels is reduced. As a consequence the fill factor will be increased.

Types, forms and materials of screw elements

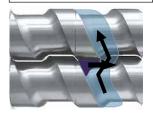
11

Conveying elements

Product flow

The material moves from one screw to the other (8-shaped flow) as well as in axial direction.

baker perkins (coperion


Two-flighted elements

Product mainly moves from one screw to the other one.

This means: reduced transportation of the product in axial direction

Single-flighted elements

Reduced movement of the product from one screw to the other.

This means: improved transportation of the product in axial direction.

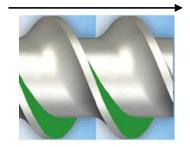
Types, forms and materials of screw elements

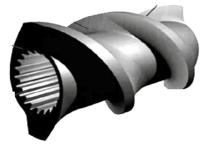
Increased free volume with special profile

A higher free volume at the same pitch is only possible by giving up the self-cleaning profile.

- With sticky products the self cleaning profile might be rebuilt by the product
- In the intermeshing area of the screws there is an open gap which reduces the conveying efficiency

Self-cleaning profile	Undercut profile (SK)
Free cross section: 100%	Free cross section: approx. 115%

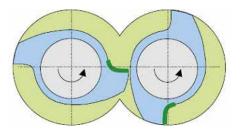

Types, forms and materials of screw elements

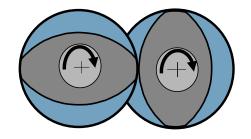

13

Conveying elements

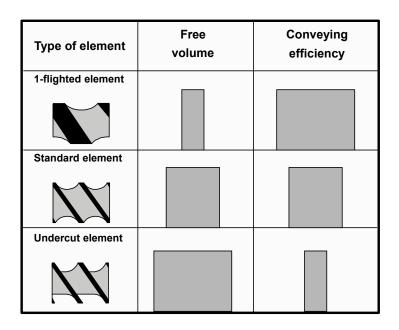
undercut conveying elements

Direction of flow

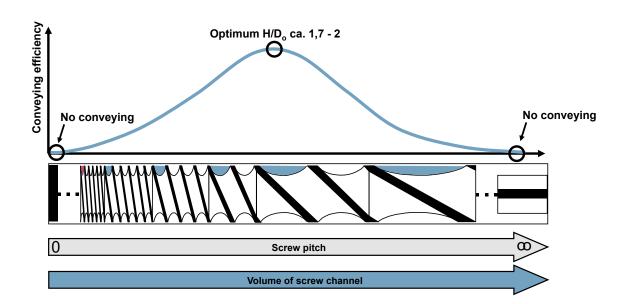




Types, forms and materials of screw elements



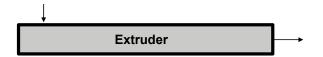
Free volume and conveying efficiency


Types, forms and materials of screw elements

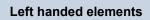
15

Conveying elements

Optimal screw pitch



Types, forms and materials of screw elements


Conveying elements


Conveying direction

Right handed elements

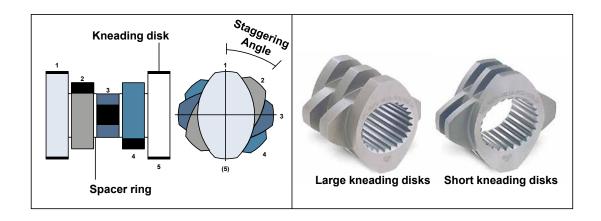
Conveying direction of the element same as direction of product flow in the extruder

Conveying direction of the element contrary to the direction of product flow in the extruder

Types, forms and materials of screw elements

17

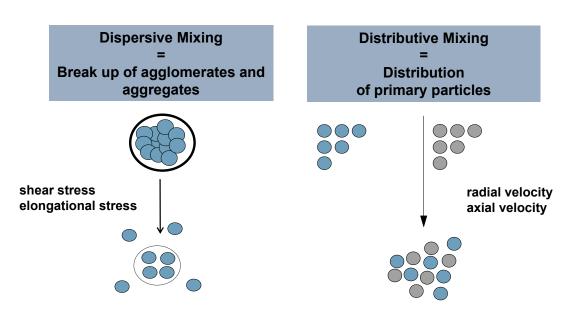
Kneading elements



Types, forms and materials of screw elements

Overview

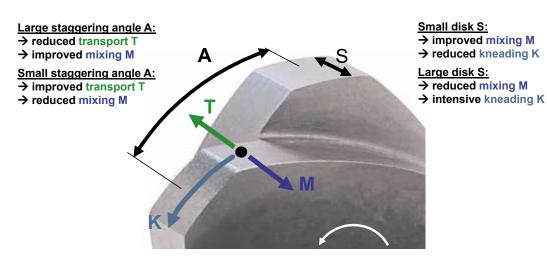
baker perkins (coperion



Types, forms and materials of screw elements

19

Kneading elements


Mixing mechanisms in twin screw extruders

Types, forms and materials of screw elements

Wokring principle

A... Staggering angle

S ... Thickness of the disk T ... Transport

M ... Distributive mixing

K ... Dispersive mixing/kneading

Types, forms and materials of screw elements

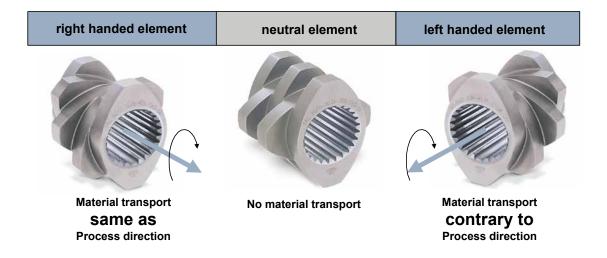
21

Kneading elements

Direction of pitch

Right handed elements

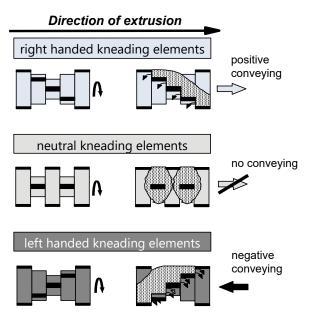
Left handed elements


baker perkins (coperion

Looking towards the cross section of an element Looking towards the cross section of an element the profile "turns" to the Right. the profile "turns" to the Left. Gearbox direct ≥ 0 Screw tip

Types, forms and materials of screw elements

Direction of product transportation



Types, forms and materials of screw elements

23

Kneading elements

Product flow in kneading elements

- baker perkins (coperion
- staggered in direction of flow
- neutral (90°) staggered kneading discs
- have to be **overrun**.
- staggered <u>contra</u> direction of flow have to be **overrun**.

Types, forms and materials of screw elements

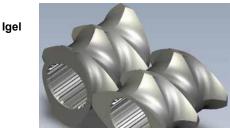
Working principle

Influence of the disk thickness

Influence of the staggering angle

Type of Element	Mixing effect	Dispersion effect (shear)	Conveying effect	Type of Element	Mixing effect	Dispersion effect (shear)	Conveying effect
x°							
x.							

Types, forms and materials of screw elements

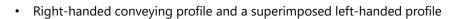

Mixing Elements

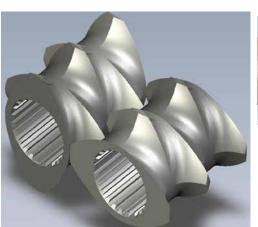
Mixing elements

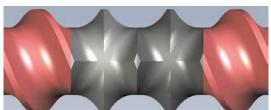
Distributive mixing

SME

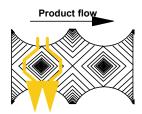
TME






Types, forms and materials of screw elements

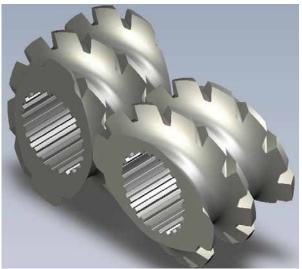
Mixing elements


Igel

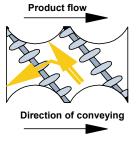
Upstream, in between and downstream: no transition elements or spacer required .

baker perkins (coperion

No active conveying


Types, forms and materials of screw elements

Mixing elements

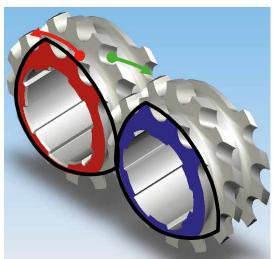

SME

Right-handed profile and superimposed left handed profile with lower flight depth

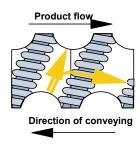
Upstream, in between and downstream: no transition elements or spacer required.

Types, forms and materials of screw elements

29

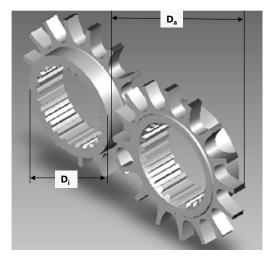

Mixing elements

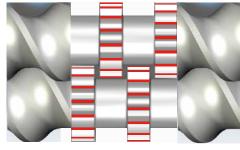
ZME


Left-handed single-flighted conveying elements with superimposed right-handed multi-flighted profiles with low flight depth

Upstream and downstream: transition elements or spacer required.

In between: no spacer required.


Types, forms and materials of screw elements


Mixing elements

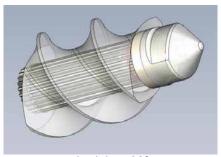
TME

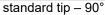
- Neutral elements. Cylindrical ring (D_i) combined with a gear-wheel (D_a)
- Teeth can have a neutral-, left- or right-handed angle
- TME-elements are mounted unsymmetrically

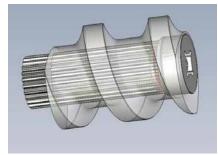
TME-elements have an integrated spacer on both sides

- → Correct transition between the elements is given
- → No additional transition elements required

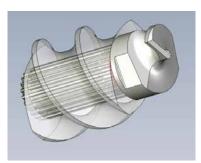
No active conveying


Types, forms and materials of screw elements


31


Mixing elements

Special element: Screw tip

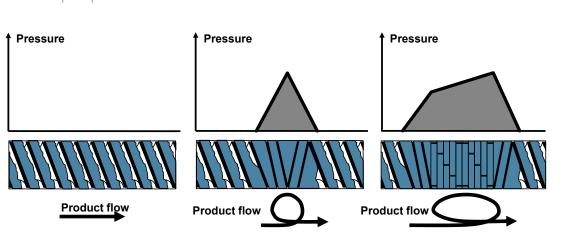


recessed tip

mixing tip

Types, forms and materials of screw elements

baker perkins (coperion

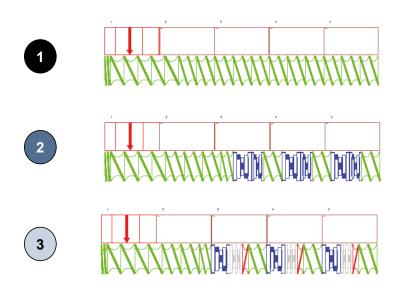

Combining effects

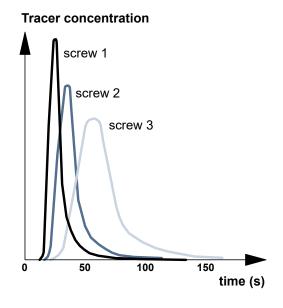
Types, forms and materials of screw elements

Combining effects

Influence of screw set up on pressure

Right handed elements are Partly filled with product.


→ This section is pressureless.


Types, forms and materials of screw elements

Combining effects

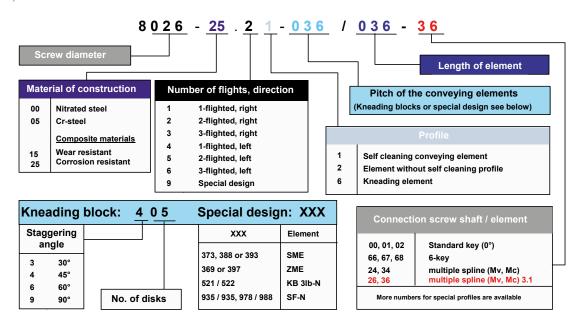
Influence of screw set up on residence time

Types, forms and materials of screw elements

35

Material

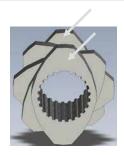
Possible materials for screw elements

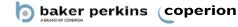

Types, forms and materials of screw elements

Material

Overview Coperion

Types, forms and materials of screw elements




Screw Elements

Cross Section

ZSK Standard Elements

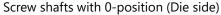
Cross section of both sides of the screw element in the same angle

Exceptions

A-Kneading-blocks Transition Elements Special Elements

A-KB Special Mixing Element

Screw Shafts


baker perkins (coperion

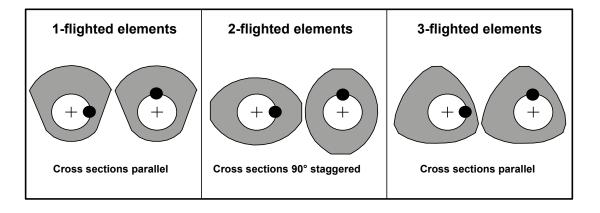
Evolute Spline with Marks

ZSK shaft with 24 teeth (ZSK 18: only 12 teeth)

- 0-Position marks on both ends of shafts
- Allow threading in correct position
- Allow positioning and fixing the screws into the screw shaft coupling in correct position

Screw shaft with 0-position (Coupling side)

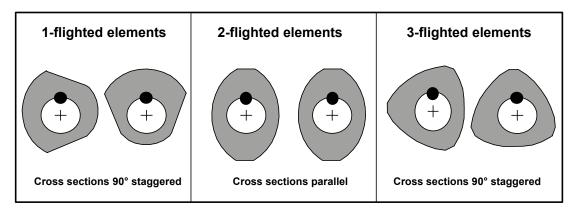
Lantern with Screw Shaft Coupling


Assembly of Screw Elements 3

Assembly of Screw Elements

Running Position of Screw Elements

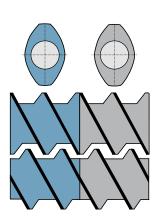
Running Position


Assembly of Screw Elements

Running Position of Screw Elements

Assembly Position

Marks on both screw shafts positioned vertically

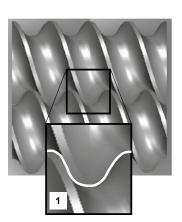


Assembly of Screw Elements

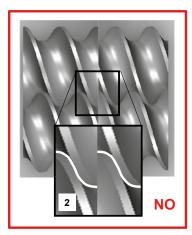
Installation of Screw Elements

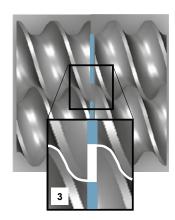
Elements with Identical Cross Sections

Screw elements with <u>identical cross section</u> are installed without any offset, regardless of the direction or the element type


The transition is **continuous**.

There is sufficient axial clearance.

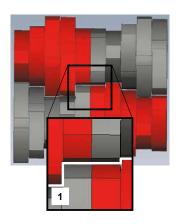

Installation of Screw Elements


baker perkins coperion

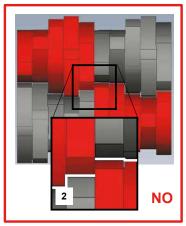
Off-set Installation of Conveying Elements

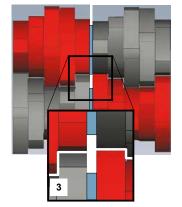
Conveying elements, having the <u>identical cross section</u>, are installed without any off-set (1).

If these elements have to be installed in an <u>off-set manner</u> (2) due to any reason, a <u>spacer ring</u> has to be installed (3)


The transition is **not continuous**, but the **axial clearance** is given by the spacer.

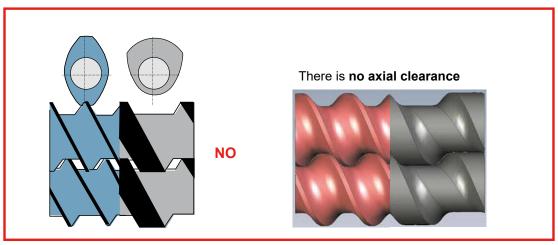
Assembly of Screw Elements 7


Installation of Screw Elements


baker perkins coperion

Off-set Installation of Kneading Elements

Kneading elements, having the <u>identical cross section</u>, are installed without any off-set (1).


If these elements have to be installed in an <u>off-set manner</u> (2) due to any reason, a <u>spacer ring</u> has to be installed (3)

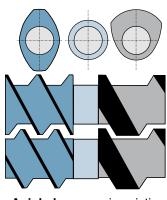
The transition is **not continuous**, but the **axial clearance** is given by the spacer.

Installation of Screw Elements

baker perkins (coperion

Elements with Different Cross Sections

When elements with different cross sections have to be combined...

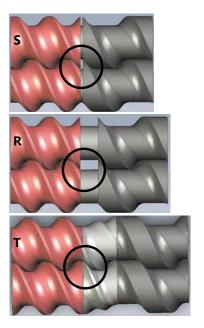

The transition is **not continuous**. There is **no axial clearance**.

The screw will touch each other which will lead to mechanical damages.

Assembly of Screw Elements 9

Installation of Screw Elements

Elements with Different Cross Sections

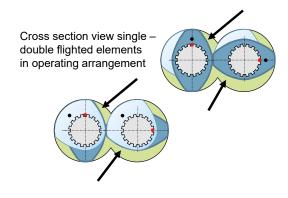


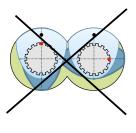
Axial clearance is existing

Between elements with different cross sections a spacer (S), a ring (R) or a special transition element (T) has to be installed.

- The transition remains **not continuous**.
- Nevertheless it is sufficient clearance available

Transition of Different Cross Sections


From Single to Two-flighted Elements


Best solution with transition-element

If without: one flange should continue

45° stagger arrangement of elements (3 teeth of spline shaft - if shaft has 24 teeth)

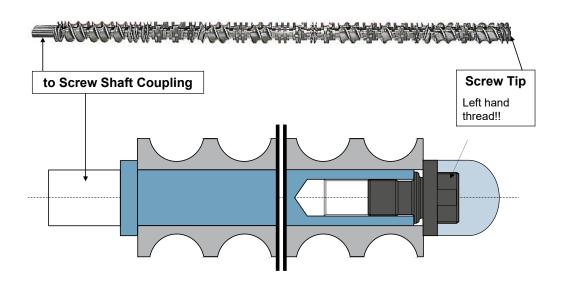
Spacer ring required

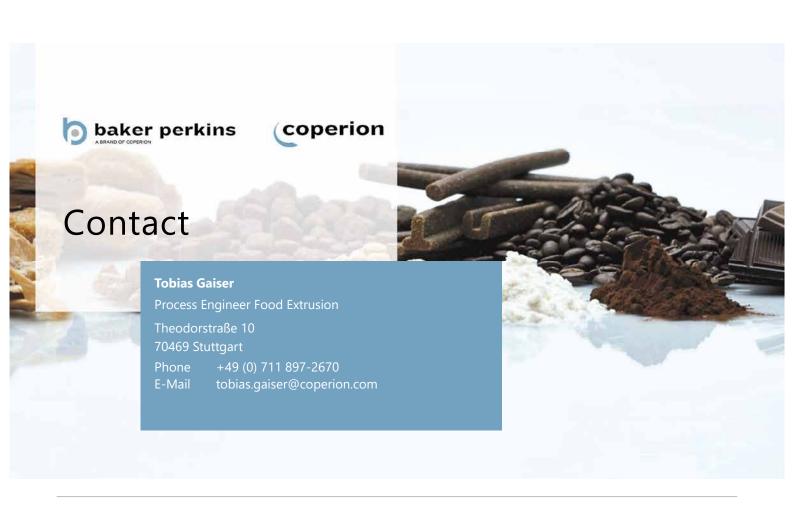
Mechanically correct arrangement **BUT** Process vise not good

Assembly of Screw Elements 11

Overview Transitions of Screw Elements

Possibilities in Threading


Type of	Self cleaning	Installa	Process function	
element		Position of cross section Example		F 100635 IUIICIIOII
Spacer (1 - 3 mm,	no	(4)	1-flighted <> 2-flighted 1-flighted <> 3-flighted	none
depending on ZSK-size)	no		Between kneading disks (part of kneading blocks)	none
Distance ring (15 - 60 mm,	no	(2-flighted <> 1-flighted 3-flighted <> 2-flighted	Distribution of product flow
depending on ZSK-size)	no	(2-flighted screw element to 3-flighted kneading block	Distribution of product flow
Transition element	partly		Undercut to standard (self-cleaning) profile	Continuous transition
(continuous transition from one	partly		First / last kneading disk of a 3-flighted kneading block.	none
profile to the other)	yes	(2-flighted <> 1-flighted 3-flighted <> 2-flighted	Distribution of product flow


Assembly of Screw Elements 12

Assembly of Extruder Screw Shafts

Screw assembly, Screw Tip

coperion

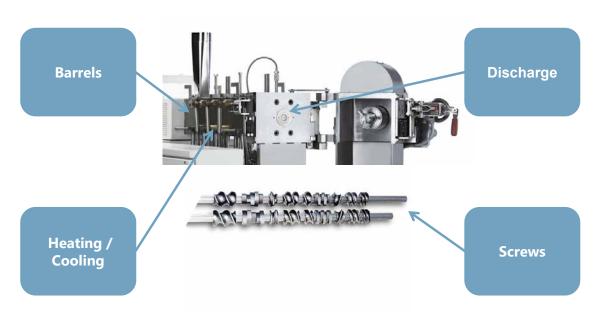
Process Opportunities in Food Extrusion

- 1 Elements of the Process Section Twin Screw Food Extruders
- 2 Process Opportunities Mechanical
- 3 Process Opportunities Thermal
- 4 Process Examples and Applications

Agenda long

Elements of the Process Section

Twin Screw Food Extruders

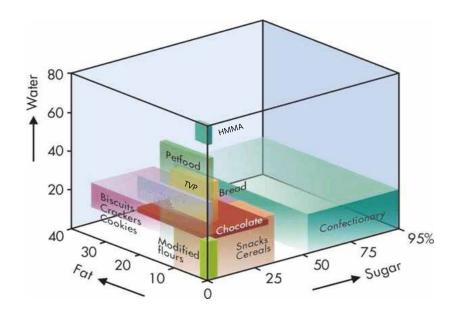

Process Opportunities in Food Extrusion

Twin Screw Food Extruders

baker perkins

coperion

High Flexibility due to Modular Design


Process Opportunities in Food Extrusion

Extruded Food Products

baker perkins

(coperion

Extrusion Applications across all Recipe Categories

Process Opportunities in Food Extrusion 29.10.2025 5

Process Opportunities

Mechanical

Process Opportunities in Food Extrusion

Mechanical Process Opportunities

Screws and Barrels

Rotating Screws Shafts with Screw Elements

- · Conveying, Kneading, Mixing, Melting, Cooking
- · Continuous Processing
- · Processing of High Viscous Masses
- Mechanical Energy Input into Product

Barrels

- Defined Process Volume
- Kneading Under Pressure
- High Local Shear Rates

Process Opportunities in Food Extrusion 29.10.2025

Mechanical Process Opportunities

Effects on Raw Materials

Change of Physical State

- Hydration when Water is Present
- Plasticizing
- Forming of a Dough or Melt

Mixing

- Distributive
- Dispersive

Molecular Degradation / Denaturation

- By Mechanical Forces
- By Dissipated Heat

Mechanical Process Opportunities

Product Discharge

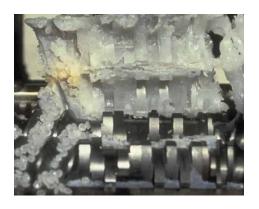
Flow Through a Resisting Die

- Pressure Build-up
- · Mechanical Energy Input
- Basis for Product Expansion

Texturization

- Down-stream of the Screws
- Flow Characteristics Determine Texture
- Supported by Cooling

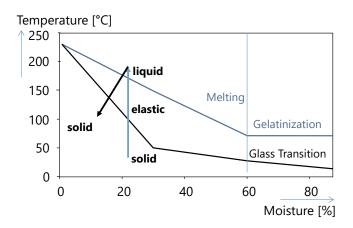
Forming Through Die Shape Cutting



Process Opportunities in Food Extrusion

29.10.2025

Mechanical Process Opportunities


Effects on Raw Materials

Plasticizing in Kneading Elements

Starch Melting During Extrusion

Diagram by Yaku

Process Opportunities

Thermal

Process Opportunities in Food Extrusion

Thermal Process Opportunities

Characteristics

Additional Thermal Energy Input is Possible

- Barrel Heating
- Direct Steam Injection
- · Preconditioning

Cooling

- Barrel Cooling
- Die Cooling
- Screw Shaft Cooling

Degassing

- Removal of Water, Steam, Volatiles
- · Removal of Thermal Energy

Thermal Process Opportunities

Preconditioning

Additional residence time

Time limited processes possible

e.g. coarse particle hydration

Two Stage Preconditioner

Process Opportunities in Food Extrusion

29.10.2025

(coperion

Process Examples and Applications

Intermediate and **End Product Examples**

baker perkins

Process Opportunities in Food Extrusion

Extrusion Cooking

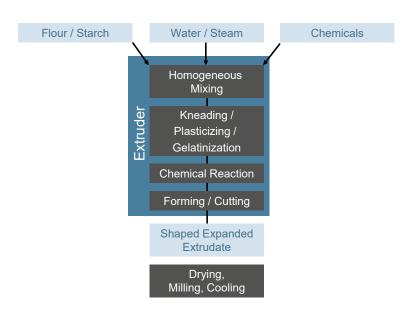
The Most Common Thermo-Mechanic Food Extrusion Process

Starch based recipes

Cereals, Snacks, Breadcrumbs, Pregelatinized Flours and Starches ...

Protein based recipes

Texturized Vegetable Proteins, Pet Food, Aqua Feed ...

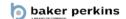

29.10.2025

(coperion

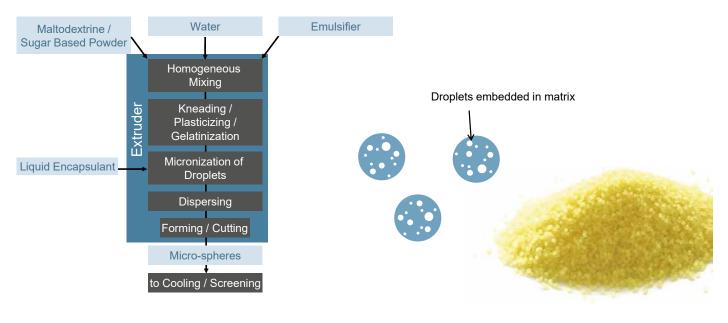
Starch Modification

Process Opportunities in Food Extrusion

Extrusion Cooking combined with a Chemical Reaction

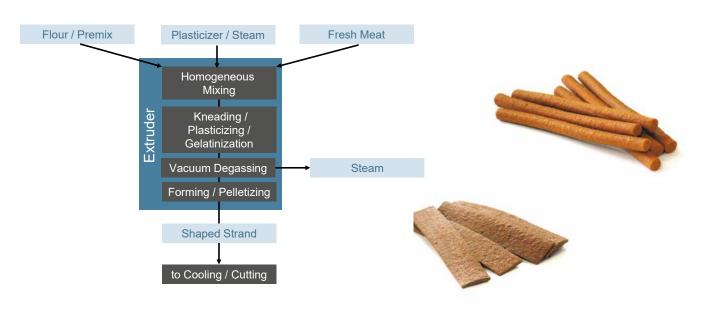


🕠 baker perkins


29.10.2025 Process Opportunities in Food Extrusion 16

Flavor Encapsulation

Dispersion / Emulsion of Flavor Droplets


Process Opportunities in Food Extrusion 29.10.2025 1

Pet Treats

baker perkins

Process with Steam Injection and Degassing

Reaction Processes

baker perkins

Characteristics and Opportunities

Adjustment of

- Temperature
- Moisture Content
- Residence Time

Addition of Reactants

- In the Desired Ratio
- At the Desired Process Section
- Intensive Mixing
- Continuous Reaction

Physical and Chemical Reactions are Possible

Process Opportunities in Food Extrusion 29.10.2025

Maillard Reaction

A Chemical Reaction Common in Almost any Food Product

baker perkins

Colour, Flavor Formation

• Cereals, Roasted malt, Cocoa Beans or Coffee Beans ...

Confectionary products

Caramel Candy, Chocolate Crumb,
 Sugar Caramelization = Pyrolytic Reaction!

Roasted Flavors

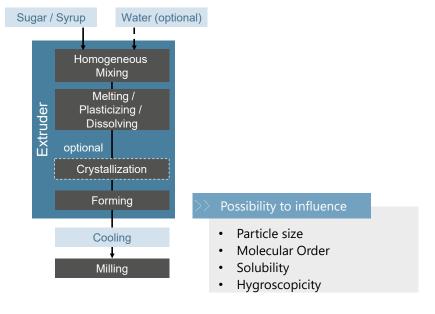
• Onion, Garlic, Yeast ...

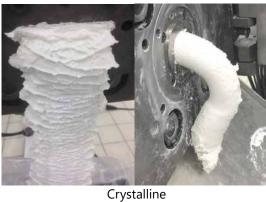
Instant Gravy Products Extruded Flavours

Tailor-made Reaction
 Different Meat Type Flavors
 Beef, Chicken, Pork ...

Cocoa crumb

White crumb



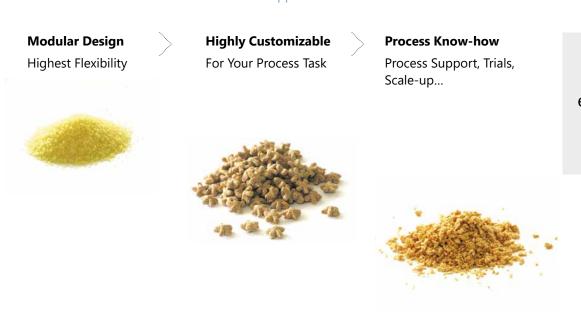

Sugar Modification

baker perkins

coperion

A Physical Reaction to Achieve Tailor-Made Properties

Process Opportunities in Food Extrusion


29.10.2025

Amorphous

21

Conclusion

Twin Screw Extrusion Offers lots of Process Opportunities

baker perkins coperion

Explore the opportunities of extrusion for your processes

Contact us!

Contact

Catherine Cooper

Senior Food Technologist

Manor Drive Paston Parkway Peterborough PE4 7AP

E-Mail catherine.cooper@coperion.cc

Fabian Specht

Senior Process Engineer

Theodorstraße 10 70469 Stuttgart Germany

Phone +49 (0) 711 897-3150 E-Mail fabian.specht@coperion.com



Index

Feeding, Conveying, Extrusion, where do I find what?

- 1. Importance of Feeding in continuous Processing
- 2. Weighing Technology
- 3. Material Characteristics & Feeder selection
- 4. Feeding for continues and batch Process
- 5. Batch Technology
- 6. Know-how & Technology
 - I. EPC
 - II. ActiFlow
 - III. Refill Array
- 7. Refilling Guideline
- 8. Conveying

Importance of Feeding in Continuous Processing

13th Food Extrusion Seminar / Feeding of Various Ingredients

Why are Feeders Necessary?

coperion coperion

- To set the precise throughput to a downstream process Accuracy
 - Feeders are used to set the flow rates of both liquids and bulk solids
- · Allows for more efficient processing in continuous mode Consistency
 - Continuous processes such as extrusion become "slaves" to the feeders
 - Discontinuous feeding can cause torque issues on the extruder
 - Torque issues could cause quality issues
 - Provide an accurate blend of bulk solids and liquids for a formulation
 - More accurate delivery of ingredients = greater control on ingredient costs
- · Eliminate pre-mixing of solids/segregation
 - Premixing can lead to segregation
 - Premixing requires additional space and cleaning requirements – more labor intensive
- · Provide an automated method of material handling
 - Eliminates waste as well as provides a safe method of transfer of ingredients to the process
 - Automation helps maintain overall safety

Considerations for feeders in a continuous process

coperion coperion

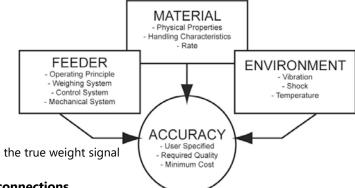
Feeder Type

Single screw vs. Twin screw

- Screw configuration Hopper configurations
- Agitation vs. vibration

Refill Method

Controls and Weight Measurement


- Load Cell Resolution
- Reaction Time of Controller
- Signal Clarity
- o Goal of filtering is to eliminate external noise that affects the true weight signal

- Flexible Connections Proper Venting Drafts/Air currents

- **Excessive Plant Vibration**

13th Food Extrusion Seminar / Feeding of Various Ingredients

Feeding Principles

- There are two basic feeding principles:
 - Volumetric
 - Gravimetric

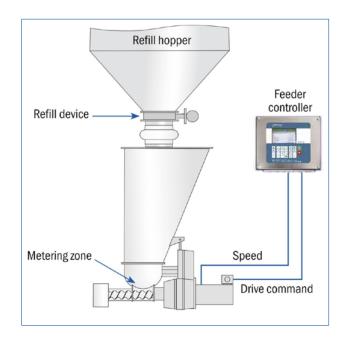
Coperion K-Tron generally employs the following types of gravimetric feeding:

Loss-in-weight feeding

Weigh belt feeding

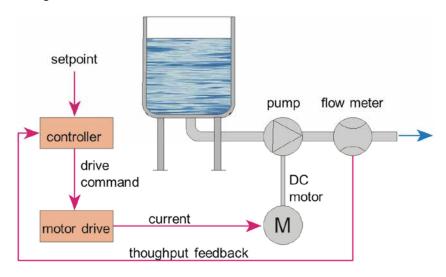
Flow metering

13th Food Extrusion Seminar / Feeding of Various Ingredients


coperion coperion

Volumetric Feeding I

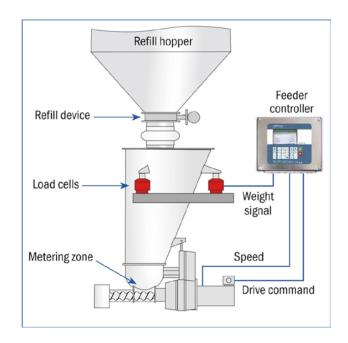
Speed Regulated Volumetric Feeding:



13th Food Extrusion Seminar / Feeding of Various Ingredients

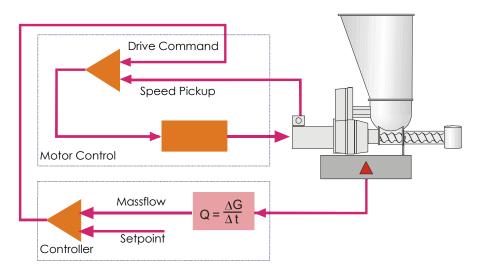
Volumetric Feeding II

Controlled Volumetric Feeding:



Gravimetric Control Principle

Weight Regulated Gravimetric Feeding:



13th Food Extrusion Seminar / Feeding of Various Ingredients

Loss-in-Weight Control Principle

coperion coperion

For loss-in-weight screw and belt feeders

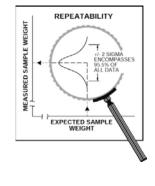
Weighing Technology

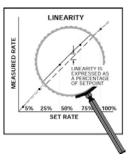
13th Food Extrusion Seminar / Feeding of Various Ingredients

Validation of a Feeder's Performance

coperion coperion k-TRON

Repeatability

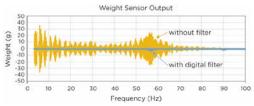

- Variance of multiple, sequential samples
- Reports how consistent the feeder's discharge rate is at a given point


Linearity

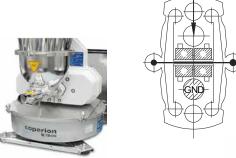

Accuracy deviation over a setpoint range

Stability

- Gauges performance drift over time


Choose Load Cell Technology

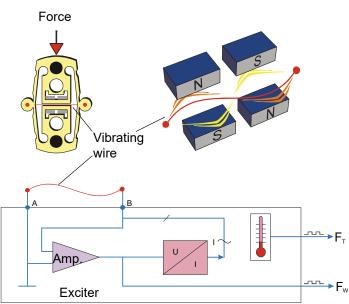
Filtering feeder noise and environmental vibrations

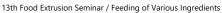

coperion coperion

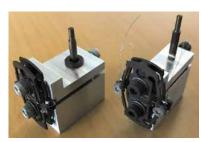
The Smart Force Transducer (SFT) offers ...

- Vibrating wire measurement technology
- Resolution 1:8'000'000 in 20ms
- Built-in microprocessor
- One-time calibration at factory
- Noise-free signal transmission
- Fast sampling time (450 samples/sec.)
- High short-term accuracy in any conditions
- Not affected by vibrations

13th Food Extrusion Seminar / Feeding of Various Ingredients



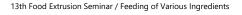




Vibrating Wire

Effect of Vibration: Dynamic Weighing

13th Food Extrusion Seminar / Feeding of Various Ingredients


Material Characteristics & Feeder selection

Material Characteristics I

Effect of Particle Properties on Flow

Property	Effects	
Particle Shape	Discharge from hoppers	
Particle Size & Distribution	Flowability & Compressibility	
Particle Hardness	Abrasiveness on equipment & particle fragility	
Bulk Density (L&C)	Storage vessels size & material's compressibility	
Moisture Content	Cohesive strength & arching ability of bulk materials	
Compressibility	Tendency to pack in a feeder hopper	
Cohesiveness	Minimum outlet diameter for bins, hoppers, and outlets	
Permeability	Tendency to flood	

coperion coperion



Feeder Selection

Screw Configurations

Material Characteristics II

Powder Material: Free Flowing – Sticky - Floating

Twin Screw TCC or TAC

Single Screw SAC

13th Food Extrusion Seminar / Feeding of Various Ingredients

Material Characteristics III

Granular Material: Free Flowing

Single Screw SSC Reduced Screw Size

Single Screw with and without overflight to avoid product in the bowl

Material Characteristics IV

Screw Selection depending on the Product:

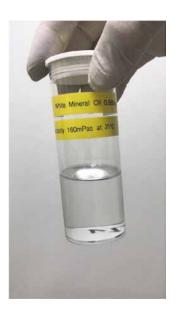
13th Food Extrusion Seminar / Feeding of Various Ingredients

Material Characteristics VI

Free flowing fragile Products:

Material Characteristics VII

Feeder flowing fragile Products to be fed with a Vibratory Feeder


13th Food Extrusion Seminar / Feeding of Various Ingredients

Material Characteristics VIII

Liquids and Waxes, which sometimes must be heated or even melted before feeding

Material Characteristics IX

Liquids and Waxes, which sometimes must be heated or even melted before feeding will be fed with a liquid feeder

13th Food Extrusion Seminar / Feeding of Various Ingredients

Feeding for continues and batch Process

Feeding for continues and batch Process I

(coperion (coperion

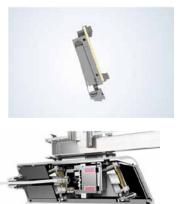
coperion coperion

Screw Feeder

- Twin screw MT12 T80 => 0.045 to 24'700 dm³/h
- Single screw $S60 S500 = > 0.140 \text{ to } 45'300 \text{ dm}^3/\text{h}$
- Great flexibility with Quick-Change solution
- Stand allow or hanging system

13th Food Extrusion Seminar / Feeding of Various Ingredients

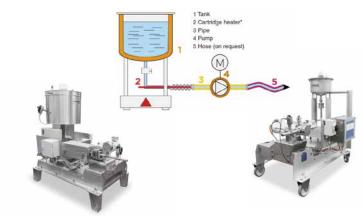
Smart Weight Belt Feeder


- SWB-300-N/O => $10 \text{ to } 40'000 \text{ dm}^3/\text{h}$
- SWG-600-N/O => 20 to $80'000 \text{ dm}^3/\text{h}$
- Smal hight, can be direct installed under the silo
- Chantel feeding for fragile products like potato chips
- Easy to clean with the slide out conveyor frame

Feeding for continues and batch Process II

Vibratory Feeder

- $V100 V300 = 1 \text{ to } 8'500 \text{ dm}^3/\text{h}$
- Various feeding tray options
- Minimal damage to the product
- Easy to clean
- Low power consumption



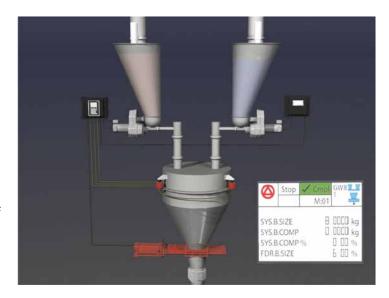
13th Food Extrusion Seminar / Feeding of Various Ingredients

Liquide Feeder

- Modular Line for Liquids LLW => 0.5 to 1'500 dm³/h
- Backpressure up to 40 bar
- Standard or with heating
- Pre-melting tank option
- Flexible to locate

13th Food Extrusion Seminar / Feeding of Various Ingredients

Gain-in-Weight Batch Principle



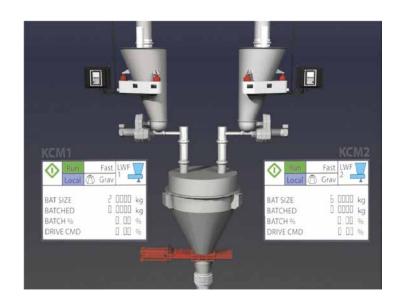
Advantages

- Only one scale device for load hopper
- Cost effective since feeders are volumetric
- Well suited to large batches

Disadvantages

- Total batch time is dependent upon the number of individual batch times necessary
- Combination of large single batches and very small batches not as versatile (due to large taring values of the collection hopper)

Loss-in-Weight Batch Principle



Advantages

- Each ingredient is batched out in its own LIW feeder
- Feeders can then operate simultaneously, making overall batching process shorter
- Can also batch out variety of ingredients at different bulk densities and high variation in mix percentages with high accuracy

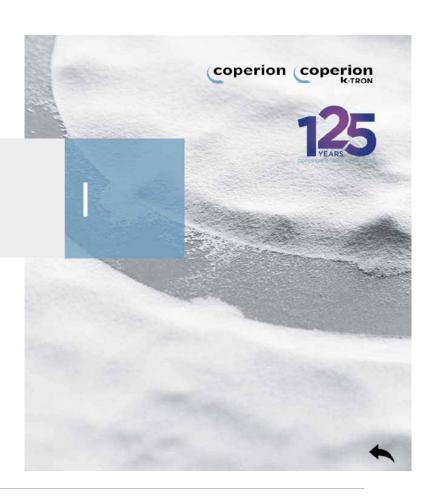
Disadvantages

Higher initial investment for loss-in-weight feeders

13th Food Extrusion Seminar / Feeding of Various Ingredients

Know-how & Technology

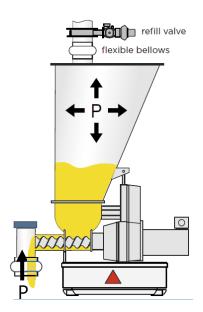
What Affects Loss in Weight Feeding Accuracy?


- Interface with Upstream / Downstream Equipment
 - Refill
 - Pressure Fluctuations
- External Influences:
 - Noise (Vibration) from other plant equipment
- Internal Influences:
 - Pressure Fluctuations

13th Food Extrusion Seminar / Feeding of Various Ingredients

EPC

Effects of Pressure on Feeder Performance


Pressure exerted externally or internally causes weigh scale errors

Cause:

- Poorly vented feeder hopper
- Refill from vacuum receiver with fluidizing pads
- N2 Blanket

· Effect:

- DN 150 refill valve
- 5 mbar over pressure
- 0,883 kg weight difference

13th Food Extrusion Seminar / Feeding of Various Ingredients

Pressure Compensation - Mechanical Solution / Electronic Solution

Outlet:

- Two identical bellows that compensate the weight in both directions simultaneously on one line.
- Normally a good solution
- Still requires maintenance

Hopper solution:

- Much more expensive,
- Usually custom engineered,
- Doesn't work as well

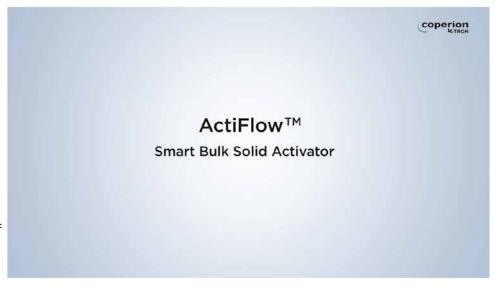
13th Food Extrusion Seminar / Feeding of Various Ingredients

Instead of a mechanical compensation, we measure the pressure in the hopper and compensate the weight in software.

Advantages:

- Lower cost
- Easier installation
- More accurate
- More reliable
- Less error-prone
- Compensation is self-optimizing via software
- Identical dynamics as the SFT for best performance by using the same filter technique

Poor Flow in Hoppers = Poor consistent feeding


Difficult powders:

- May get compacted
- Form rat-holes & bridges

Result in operation:

- Production interruption
- Quality problems

Screw feeder accuracy is a function of consistent screw fill

Alternative Solutions for Improved Hopper Flow

Design Options

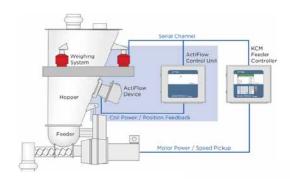
Vertical Agitation

Flexible Elastomer Liners (e.g. FlexWall, Shear Hoppers)

Bin Vibrators

Air Injectors (e.g. Magic Mushrooms)

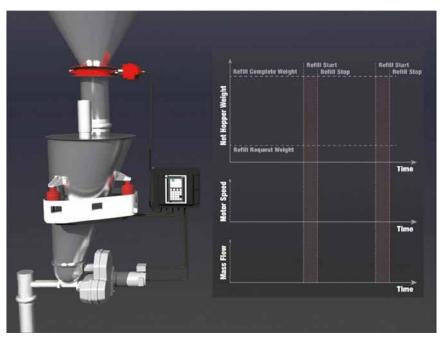
Elastomer Coatings



13th Food Extrusion Seminar / Feeding of Various Ingredients

ActiFlow Design

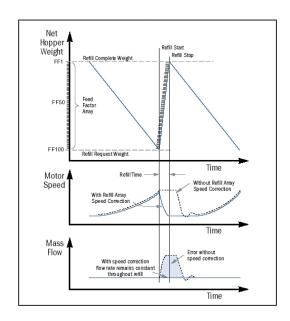
- The ActiFlow Device is bolted to the outside of the hopper wall, with no product contact. It is ideal for applications which require a stainless-steel hopper.
- The special design ensures material activation has a minimal effect on the weighing system.
- Deteriorating material flow conditions in the hopper are detected by the KCM controls prior to a significant deviation of the feeder's desired mass flow.
- The ActiFlow activity is increased to get good mass flow in the hopper.
- ActiFlow just activates as much as necessary, not as much as possible



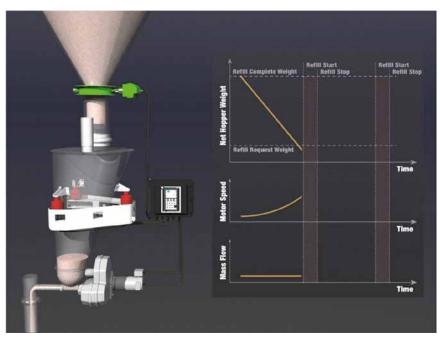
Refill Array

13th Food Extrusion Seminar / Feeding of Various Ingredients

Continuous Loss-in-Weight Feeding



Refill Array and its Importance in the Continuous Process


- By trending the loss-in-weight intervals and corresponding speed of the screw, the same screw speed can be obtained during the gain in weight which occurs during refill
- Maintaining correlated screw speed = consistent and constant delivery of the ingredient to the process
- Refill devices can then be operated while the refill array is enabled to ensure that the process is never starved of material

13th Food Extrusion Seminar / Feeding of Various Ingredients

Continuous Loss-in-Weight Feeding during Refill

coperion coperion

Refilling Guideline

13th Food Extrusion Seminar / Feeding of Various Ingredients

Additional Important Refill Considerations to Improve Feeder Accuracy

coperion coperion k-tron

- Choosing the Proper Refill Device

 Reaction time of the device

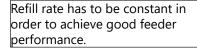
 Device must be LEAK FREE

 - Material characteristics
- **Choosing the Proper Hopper Size for Refill**
- **Choosing the Refill Times**
 - Optimize the refill window
- Defining importance of accuracy during refill, particularly for low rate feeding

Loss in Weigh Feeder refill guideline

Refill hopper

Refill device


Load cells

Metering zone

Feeder

controller

Weight

Thumb rule; refill rate = 8 to 10 times the maximum feed rate

Recommendation: keep falling height as short as possible and in any case

<1 m to reduce impact and material build-up in refill pipe.

higher the absolute load cell accuracy.

A refill should take < 30 seconds. Typical refill time is 5 to 20 seconds.

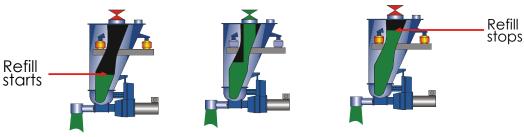
Up to 25 refills/h are typical for 80% of CK LW-Feeder applications operating at max. feed rate.

Higher refill sequences causing no feeding performance issues as long as the general refill rules are considered. Wear issues of the refill valve have to be considered when operating at a higher refill rate than typical.

Up to 15% of the feeder operating time is foreseen for refill. During refill the Loss-in-Weight feeder switches to volumetric mode.

Size weigh hopper as small as possible and as big as necessary. As lower the load cell capacity as resolution improving the feeding

13th Food Extrusion Seminar / Feeding of Various Ingredients

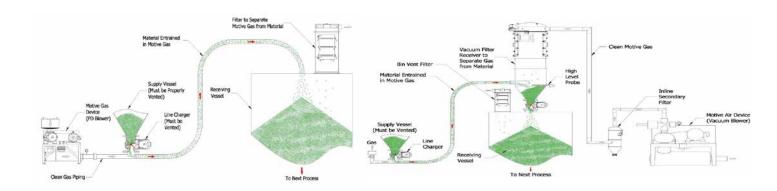

Loss in Weigh Feeder refill guideline

Guideline: Hopper volume used for refill:

- Crystalline free flowing materials like sugar or salt: **Up to 70%** of weigh hopper volume
- Coarse powders, low tendency for fluidization like milk powder: **Up to 50%** of weigh hopper volume
- Fine & easy to fluidize powders like starch: **Up to 30** % of weigh hopper volume

Please note: The given values are general guidelines and might vary to actual refill settings. The individual setting is pending on material characteristics, height of refill pipe, material flow out of supply hopper, and open / close time of refill valve. Specific refill settings will be defined as part of a feeding accuracy test, or loss in weigh feeder start up.

Conveying


13th Food Extrusion Seminar / Feeding of Various Ingredients

Pneumatic Conveying – Dilute Phase

• Typical Pressure Dilute Phase System

• Typical Vacuum Dilute Phase System

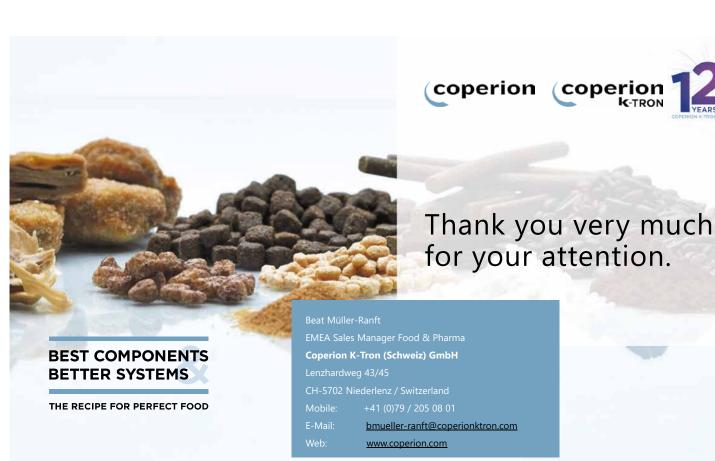
Specialty Bag Dump Stations in Hygienic Design

13th Food Extrusion Seminar / Feeding of Various Ingredients

Typical Feeders Used in Processing

Refill receiver for LWF feeder refill

Keep full receiver for day-hopper filling


GWB batch receiver for recipe conveying

Batch feeder-receiver

Development of a Textured Hemp Protein for use in Plant-Based Foods

<u>Verena Schmidt</u>, Maria Hillreiner, Christina Opaluwa and Christoph Verheyen Fraunhofer-Institute for Process Engineering and Packaging (IVV), Freising, Germany E-mail of corresponding author: <u>verena.schmidt@ivv.fraunhofer.de</u>

Fraunhofer IVV is involved in research and development projects focusing on texturing plant-based biopolymers, such as plant proteins, starch and fiber, using innovative processes. The focus is on structuring and functionalizing raw materials and food by-products for use in innovative foods such as meat substitutes and healthy snack alternatives. Hemp protein is one plant-based protein that has become increasingly important in recent years as part of the superfood trend. Despite its numerous nutritional, ecological, and functional advantages, there has been a lack of comprehensive research and development work on the texturization of hemp protein. The aim of the work was therefore to develop high-quality hemp-based texturates for use as a texturing component in meat alternatives and as a basis for healthy snacks.

First, various commercially available hemp proteins were identified, characterized, and evaluated in terms of their chemical composition and techno-functional properties, such as solubility, water-binding capacity, and rheological behavior. To produce protein- and starch-rich texturates, the selected protein ingredients were thermomechanical processed using a co-rotating twin-screw extruder at low water content, with the addition of selected legumes and polysaccharides in different recipe formulations. The influence of the recipe formulation and process parameters such as temperature, shear and water content on the texturate properties was analyzed. Expansion, color, hardness, rehydration behavior and sensory properties were evaluated. The process was then scaled up from the pilot scale to the industrial scale, and the suitability of the texturates was tested in applications such as burger patties and snack products.

The characterization and evaluation of plant-based protein ingredients derived from hemp revealed that those with a high protein content met the desired techno-functional requirements for texturizing. Promising protein-and starch-rich textures were produced using low moisture extrusion with a combination of hemp protein concentrate and pea protein isolate (PPI) and corn starch. By systematical varying recipe formulations and process parameters, functional relationships were identified between composition, processing and resulting texture properties. The results showed that adding PPI or corn starch to the recipe formulation, and preheating the plant proteins, optimized the texture and rehydration properties of the texturates. These results demonstrate the potential of hemp protein as a base for meat alternatives and snack products.

This work was carried out as part of the "hempTVP" project (FKZ: 16KN092724), which was founded by the BMWK as part of the ZIM innovation network InnoHemp.

A Toolbox of Methods to Advance the Mechanistic Understanding of Plant Protein Extrusion

Felix Ellwanger

Karlsruher Institut für Technologie, Karlsruhe, Germany E-mail of corresponding author: felix.ellwanger@kit.edu

The demand for plant-based meat alternatives is steadily increasing, driven by consumer interest in more sustainable and health-conscious diets. Extrusion processing is the key technology for producing these products, with two main approaches: high-moisture extrusion to create fibrous meat-like structures and low-moisture extrusion to generate texturized vegetable proteins as functional intermediates. To better understand and optimize these processes, advanced characterization methods are required that can capture both material properties and structure formation under extrusion-relevant conditions.

At our institute, we present a methodological toolbox to investigate extrusion processes comprehensively. Extrusion trials can be performed at different processing scales, ranging from laboratory to pilot equipment, enabling direct transfer of findings to industrial conditions. The resulting extrudates can be characterized visually and mechanically to quantify structure formation and product quality. Rheological data under extrusion-like conditions can be obtained with a closed cavity rheometer, which allows the measurement of flow and deformation behavior at high temperature and shear. In addition, flow within the die and screw sections can be simulated to provide detailed insights into local stress and temperature distributions. From the combination of these methods, a mechanistic understanding of structure formation during the production of meat analogs is created, contributing to the development of innovative, high-quality, and sustainable plant-based products.

coperion

Extrusion of meat analogues: TVP and HMMA

Ing. Tobias Gaiser, Process Engineer Food Extrusion

- 1 Texturization of proteins
- 2 Texturized proteins TVP and HMMA
- 3 Product examples TVP
- 4 Product examples HMMA
- 5 Recipe development
- 6 Process development
- 7 Post processing TVP
- 8 Post processing HMMA

Extrusion of meat analogues: TVP and HMMA

Texturization of proteins

Extrusion of meat analogues: TVP and HMMA

The ZSK Twin Screw Extruder

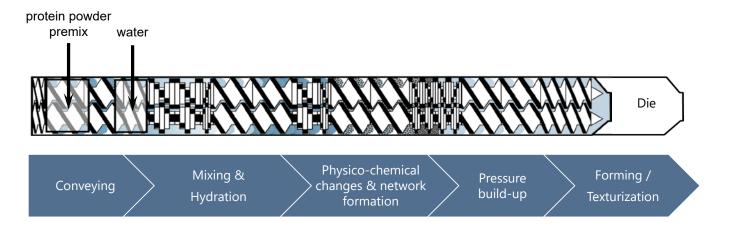
What is happening inside

Mechanical / Physical processes

- Hydration, dispersion, dissolving
- Kneading, cooking, plastification
- Distributive & dispersive mixing (mechanical disruption, milling)
- Heating & cooling (over certain residence time)
- Melting & crystallization
- Physico-chemical reactions (denaturation, gelatinization)
- Thermal reaction, heat treatment (pasteurization)
- Devolatilization/ degassing (atmospheric / vacuum)
- Texturization
- · Pressure built up, forming, expansion

baker perkins (coperion)

texturized proteins


Extrusion of meat analogues: TVP and HMMA

.

Texturization of proteins

Most food extrusion processes can be described by "extrusion cooking". This refers to a thermo-mechanical process combining moisture, pressure, temperature and mechanical shear. Thermo-mechanical energy input is needed to form a continuous and cohesive matrix from the mixture of protein powder and water \rightarrow texturization.

Extrusion of meat analogues: TVP and HMMA

5

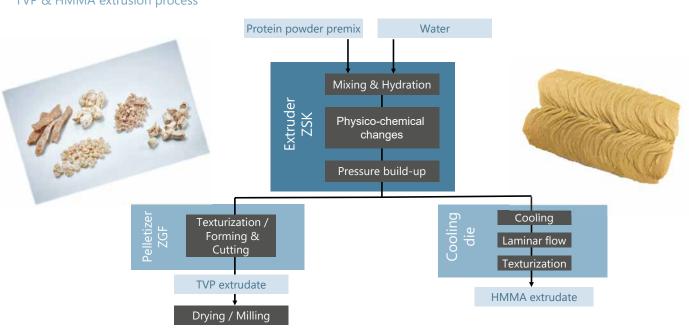
Texturized proteins – TVP and HMMA

Extrusion of meat analogues: TVP and HMMA

Texturized proteins – TVP & HMMA

Texturized Vegetable Protein (TVP)

High Moisture Meat Analogue



Extrusion of meat analogues: TVP and HMMA

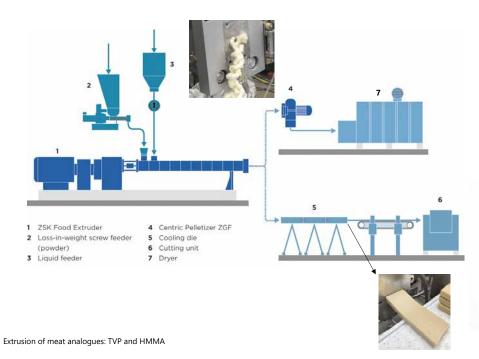
Texturized proteins – TVP & HMMA

TVP & HMMA extrusion process

Extrusion of meat analogues: TVP and HMMA

Texturized proteins – TVP & HMMA

Comparison of characteristics

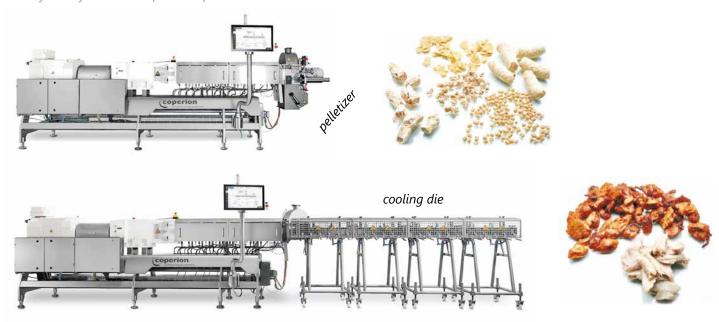

	TVP	нмма 🧼
Water addition [%]	10 – 30	50 – 70
Extrudate exit temperature [°C]	120 - 170	70 – 100
Storage conditions	Dried, bulk product	Chilled or frozen
Texture	Expanded, fibrous	Dense, layered fibers
Application	Soaked in water prior to use	Ready to eat
Used for	Burger patties, minced meat, sausages	Meat like pieces, muscle meat- like products

Extrusion of meat analogues: TVP and HMMA

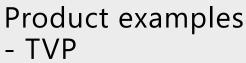
9

Texturized proteins – Meat analogues

One Hybrid-system – Two possible processes


10 – 30 % process moisture

Texturized proteins – Hardware layout



One Hybrid-system – Two possible processes

Extrusion of meat analogues: TVP and HMMA

1

baker perkins (coperion

Extrusion of meat analogues: TVP and HMMA

Quality parameters – depending on application

- Water absorption capacity
- Duration and speed of hydration
- Fiber texture / length / strength

baker perkins (coperion

- Bulk density
- Shape
- Extrudate surface
- ...

Extrusion of meat analogues: TVP and HMMA

13

Dry texturized vegetable protein (TVP)

Examples – pea based

Dry chunk

Chunk after soaking in water

Extrusion of meat analogues: TVP and HMMA

baker perkins (coperion

Examples – Soy based

Dry chunk

Chunk after soaking in water

Extrusion of meat analogues: TVP and HMMA

15

Dry texturized vegetable protein (TVP)

Examples – TVP-based end products

Hamburger patties

Fried minced meat

Extrusion of meat analogues: TVP and HMMA

baker perkins (coperion

Examples – TVP-based end products

Sausages Meat balls

Extrusion of meat analogues: TVP and HMMA

17

Dry texturized vegetable protein (TVP)

Examples – TVP based end products

Fish fingers

Extrusion of meat analogues: TVP and HMMA

- Considerations in application of dry texturized proteins:
 - Cutting / shredding
 - Rehydration
 - Seasoning
 - (Re-)Shaping

-1

baker perkins (coperion

TVP-based dishes – Prepared and ready to serve

Fresh vegetable and TVP meals (Fava bean based)

Large TVP chunks - pan fried

baker perkins (coperion

Extrusion of meat analogues: TVP and HMMA

- 1

Product examples - HMMA

Extrusion of meat analogues: TVP and HMMA

HMMA (wet texturized proteins)

Quality parameters – depending on application

- Texture:
 - Toughness
 - Elasticity ("Squeakyness")
 - Fiber strength
 - Juiciness
- Colour
- Shape
- Extrudate surface
- ...

Extrusion of meat analogues: TVP and HMMA

HMMA (wet texturized proteins)

Examples – intermediate product

Directly after extrusion

baker perkins (coperion

Shredded and marinated

HMMA is an intermediate product - further processing is necessary

Extrusion of meat analogues: TVP and HMMA

HMMA (wet texturized proteins)

Examples – HMMA-based end product

Chicken chunks

HMMA-based end product examples

Extrusion of meat analogues: TVP and HMMA

Chicken nuggets

HMMA (Wet Texturized Proteins)

End product examples

Chicken curry

Extrusion of meat analogues: TVP and HMMA

- Considerations in application of wet texturized proteins:
 - Cutting / shredding
 - Cooking
 - Marinating
 - Seasoning


HMMA (Wet Texturized Proteins)

baker perkins coperion

HMMA-based dishes – Prepared and ready to serve

Chicken breast filet

"Maultaschen" (swabian dumplings)

Extrusion of meat analogues: TVP and HMMA

25

Recipe development

Extrusion of meat analogues: TVP and HMMA

Recipe development for texturized proteins

Potential protein sources

• , Legumes & Pulses

- Soy, Pea, Fava Bean, Chickpea Lentil, Lupin, ...

Cereals & Tubers

- Wheat, Corn, Rice, Potato, ...

Seeds

- Pumpkin, Sunflower, Rapeseed, ...

Novel Sources

- Algae, Fungus, Bacteria, ...

Hybrid Products

- Including Fish, Meat, Milk, Insects, ...

Extrusion of meat analogues: TVP and HMMA

Influence of protein source

Structure, Color, Taste,...

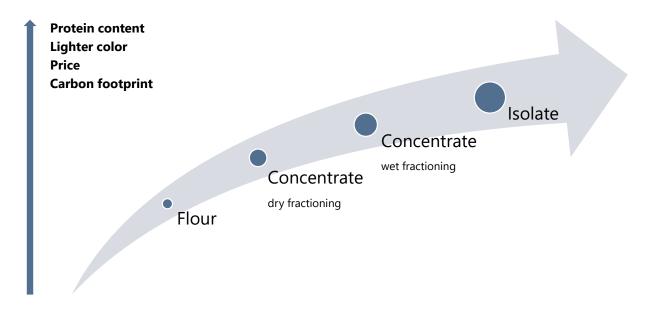
>> Pea-based

Extrusion of meat analogues: TVP and HMMA

Comparison of different plant protein sources

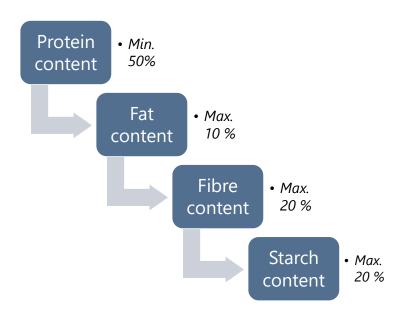
Final product properties depend strongly on raw material characteristics

	Price	Availability	Fat content	Allergy potential	Color	Natural flavor	Fiber strength
Soy	+	++++	+++	+++	beige	++	+++
Pea	++	+++	+	+	brownish	+++	++
Wheat	+	++++	+	+++	beige	+	+++
Pumpkin	++++	+	+++	+	dark green	+++	++
Lupin	++	+	++	+++	yellowish	++	++
Potato	++++	++	+	+	dark brown	++++	+++
Fava bean	++	+++	+	+	beige	++	+++


Extrusion of meat analogues: TVP and HMMA

2

Comparison of protein product types


High protein contents require more intense processing steps

Extrusion of meat analogues: TVP and HMMA

Raw material selection for texturized proteins

Certain requirements for protein raw material in texturized proteins

- Protein is the basis for network formation
 - → low protein content results in soft/weak texture
- Fat can negatively influence processing in extruder
 → must be limited
- **Fibres** can negatively influence structure formation
 - → must be limited
- **Starches** can negatively influence network formation
 - → high starch content results in doughy texture

31

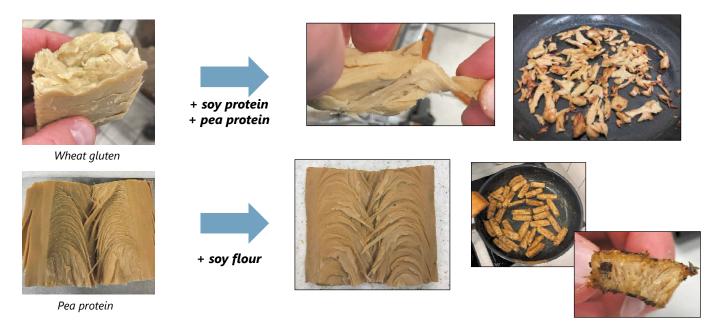
Mixing components in recipe development

Influence of fibre type and source on pea-based HMMA recipe

Extrusion of meat analogues: TVP and HMMA

Appealing texture Fibrous mouthfeel Fine structures

Rubber-like texture No fibrous mouthfeel


Appealing texture Fibrous mouthfeel Coarse structures

Extrusion of meat analogues: TVP and HMMA

Mixing components in recipe development

Changing Characteristics based on selected protein source

Extrusion of meat analogues: TVP and HMMA

3

Process development

Extrusion of meat analogues: TVP and HMMA

Influence of moisture on texturized proteins

Determination of process moisture after developing raw material recipe


Extrusion of meat analogues: TVP and HMMA

3

Influence of process moisture on TVP

Higher process moisture leads to softer texture

Firm texture Visible fibers

Softer / mushy texture Less visible fibers Lighter color

Extrusion of meat analogues: TVP and HMMA

HMMA product quality

Influence of energy input

Screw speed / configuration

Mechanical energy input

Fiber quality & texture

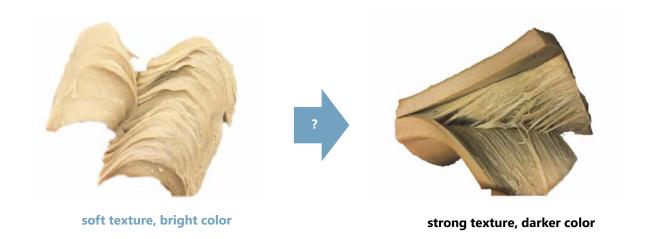
Extrusion of meat analogues: TVP and HMMA

3

Influence of energy input on HMMA structure

baker perkins coperion

Energy input through screw speed

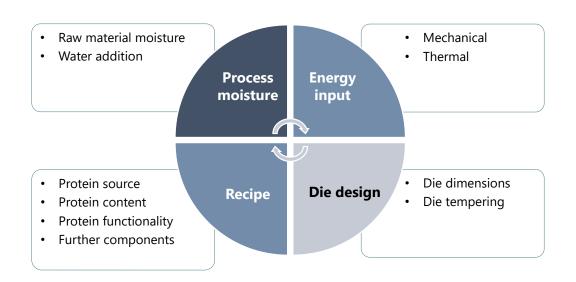

low rpm medium rpm high rpm Flow direction Soft texture, dough-like, brittle Flow direction Flow direction

Extrusion of meat analogues: TVP and HMMA

Process development for texturized proteins

Find a possible solution

How to achieve different product structures?


Extrusion of meat analogues: TVP and HMMA

39

Product quality of texturized proteins

Key influencing parameters to consider

Extrusion of meat analogues: TVP and HMMA

Post processing - TVP

Extrusion of meat analogues: TVP and HMMA

Granulation of TVP with die-face cutter

baker perkins (coperion

Different shapes and sizes achievable

Extrusion of meat analogues: TVP and $\ensuremath{\mathsf{HMMA}}$

Post-processing TVP: Further steps

Depend on the application in the end product.

Shredding:

- Increases open pore surface
- Can increase water uptake

Drying

• Consider different dryer types

Rehydrating

· Consider rehydrating with seasoned liquid

Reshaping

 Mix TVP with binders, seasonings, oil/fat to achieve cohesion and shape product (e.g., by filling in casings)

Packaging

Different end products require different post-processing.

baker perkins (coperion

Extrusion of meat analogues: TVP and HMMA

43

Post processing - HMMA

Extrusion of meat analogues: TVP and $\ensuremath{\mathsf{HMMA}}$

Post-processing HMMA: Cutting

Endless strand HMMA requires at least cutting after the extruder.

Extrusion of meat analogues: TVP and HMMA

HMMA exits cooling die as an endless strand.

Post-extrusion cutting allows a vast variety of forms and shapes.

Considerations:

- Cut directly after extrusion
- Cut after freezing /thawing /cooking

baker perkins (coperion

- Cutting direction (along or across the fibers)
- Cutting type (clean cut or ripping/tearing)

45

Post-processing HMMA: Cutting

Different shapes and sizes possible.

Extrusion of meat analogues: TVP and HMMA

Post-processing HMMA: Further steps

Possible further steps (depend on the application in the end product)

Blanching / Cooking:

• Water uptake up to 30 % possible

Marinating (wet seasoning)

Oil-based / Emulsion-based marinades can further increase product weight

Dry seasoning

Preservation

- · Pasteurization
- · Freezing/cooling
 - Method of cooling has been shown to significantly influence HMMA structure and texture

Blanching

Extrusion of meat analogues: TVP and HMMA

- 1 Introduction die flow
- 2 Die basics and design features
- 3 Mechanism of expansion in food extrusion
- 4 Expansion indices
- 5 Types of expansion
- Die calculations
- 7 Shaping the product

Title of Presentation

Introduction

Die functions

- Shaping the product
- Structure formation
- Introduction of mechanical energy
- Providing resistance

• Creating pressure

- Expansion
- Seal against pressure inside the extruder

Introduction

Die flow

Flow through a resisting die is a function of pressure, product rheology and geometry of the die.

$$Q = k_d \frac{p}{\mu_{\alpha}}$$

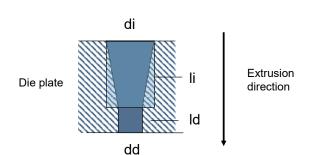
Influence by

- extrusion process section parameters
 - throughput, screw configuration, rpm (degree of fill)
- transition between screws and die openings (dead space)
- · orifice design
- die and pelletizer parameters
 - Die temperature, throughput per die hole, pelletizer (rpm, distance to die plate)
- recipe, water content, steam

Expansion and die design

Die basics and design features

Title of Presentation

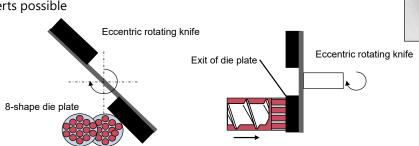

Die design parameters

Orifice characteristics

- Orifice shape (round)
- Size/ diameter d_d
- Land length I_d
- Inlet length li
- Inlet design (tapper, angle, d_i/counterbored)

Die plate characteristics

- Number of orifices in die plate
- · Dead space and product flow path before die opening
- Material of construction of die plate/ inserts
- If concentric: diameter and count of orifice rows


baker perkins

Expansion and die design 7

Die basics and design features

Transition screw to orifice

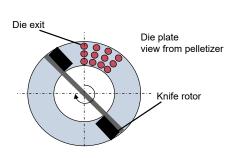
- Die holes only in prolongation of 8-shape
- If centric pelletizer, in center no die holes
- Eccentric pelletizer possible
- · Very restricted surface for die holes
- Screws protruding into die plate
 Use of recessed screw tips
- No inserts possible

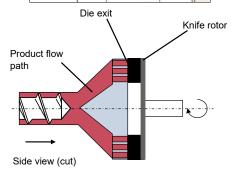
(coperion

Best flow pattern situation

- Die holes in prolongation of screw tips
- Very restricted surface for orifices available
- Smooth transition
- Difficult situation for centric pelletizer
- Short center distance

expansion and die design

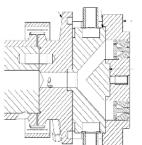

Top view (cut)

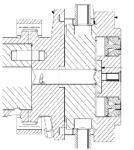

Die basics and design features

Large die plate surface situation

Central fed die

- For larger throughput rates
- Spreading of product flow to larger surface
- · Longer flow path
- 8-0 transition before flow to die plate

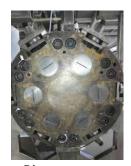




(coperion

baker perkins

Expansion and die design


Crispbread die

Expansion and die design 24/09/2025 11

Die basics and design features

Other discharge possibilities: strand die

For sticky or low viscous products

No direct cutting possible or desired

Die face sloped for smooth product flow

Often transition to conveyor belt

baker perkins

(coperion

Expansion and die design 12

Other discharge possibilities: open discharge

Low pressure situation
For very low viscous/ liquid products
During trials for first shot of unknown material
Discharge downwards possible

- No dirty surface
- For some downstream processing better suited

Expansion and die design 13

Die basics and design features

Other discharge possibilities: special discharge

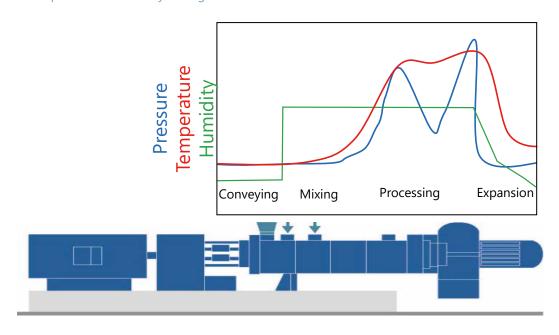
baker perkins (coperion

Special lateral die with natural breaking of particles
Orifices around the laying 8 shape
Product pushed out by the screws inside this special die

Mechanism of expansion in food extrusion

Title of Presentation

Mechanism of expansion in food extrusion



Mechanism of expansion in food extrusion

Pressure – Temperature – Humidity during Extrusion

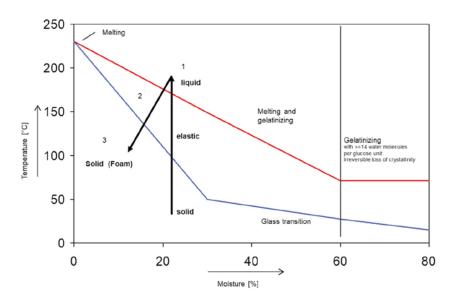
Expansion and die design

Mechanism of expansion in food extrusion

Essential conditions for expansion at the die

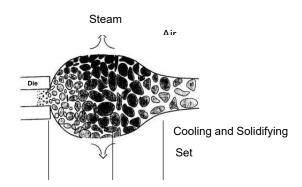
- Free water available
- p/T conditions above evaporation conditions
- viscous material (possibility to build up pressure)
- Narrow orifice (possibility to build up pressure)
- Pressure drop after die

Sudden flash of water after exit of the die


- High molecular matrix with gas holding capacity
- Flowable viscous mass when exiting the die
- Solid product keeping its shape when cooled down

Mechanism of expansion in food extrusion

Simplified phase diagram


Expansion and die design 19

Mechanism of expansion in food extrusion

Essential conditions for expansion at the die

- 1 High viscous liquid inside the die, water in liquid state
- 2 Plastic when water flashing off, expanding
- 3 Solid when cooled down/ dried up

Too elastic – expands a little but shrinks afterwards

Needs too long time till solid – expands but shrinks afterwards

Low viscosity/ poor gas holding capacity – cannot keep the gasbubbles and collapses

Too hard/ poor gas holding capacity – surface tears off, ruptures to release the vapour. No/poor expansion

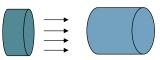
Title of Presentation

Expansion indices

Longitudinal expansion

Longitudinal expansion (LEI)

- · Longer land length
- Higher rpm
- Higher temperature of barrel/ die


Keeps well the shape of the die design

Degree of expansion difficult to determine

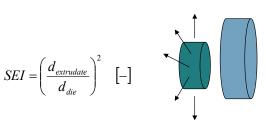
Comparison of m/min of extrudate or rpm of pelletizer (daily life)

$$LEI = \frac{v_{extrudate}}{v_{in \ die}} = \left(\frac{\rho_{in \ die}}{\rho_{extrudate}}\right) \times \frac{A_{die}}{A_{extrudate}} \times \frac{1 - moist_{in \ die}}{1 - moist_{extrudate}} \quad \left[-\right]$$

 $\rho_{in die}$ density of product in the die $[g/mm^3]$ $\rho_{extrudate}$ density of extrudate $[g/mm^3]$ moist water content in extruder [%] $moist_{extrudate}$ water content after flash off [%]

Radial expansion and overall expansion

baker perkins coperion


Radial expansion (SEI)

- Shorter land length (land length-diameter ratio)
- Lower rpm
- Lower temperature of barrel/ die

Product shape blurred compared to die design

Easy to determine d_{extrudate} /d_{die} [%] (daily life)

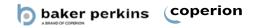
Surface expansion index SEI (literature)

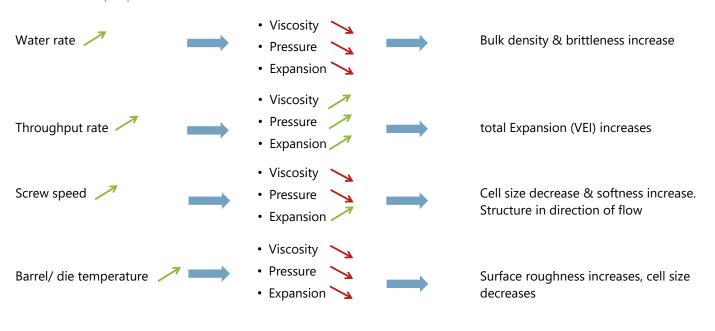
Overall Expansion (VEI)

- · Expressed by product Density
- · Volumetric expansion index VEI

$$VEI = SEI \times LEI$$
 [-]

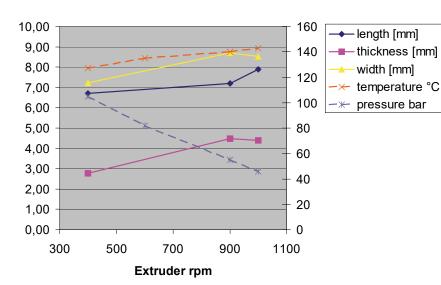
Expansion and die design 23


Expansion indices



Relation with input parameters

Relation with input parameters



Expansion and die design 25

Expansion indices

Relation with input parameters

Relation with input parameters

Expansion and die design

Types of expansion

Title of Presentation

Types of expansion

Bubble size and orientation

Small bubbles

- · Very high rpm
- · Low water content
- Recipe with more ingredients acting as nucleation points (bran/fibres, undissolved mineral or salt components)
- Product looks brighter (oriented bubbles)

Big bubbles

- · Low rpm
- Higher water content
- Round bubbles

Same product density can be achieved by few big or many small bubbles

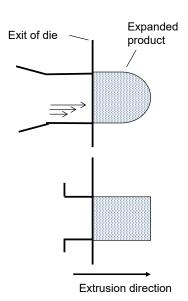
Expansion and die design 29

Types of expansion

Die influence

Roundish expansion

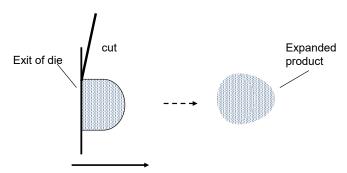
More laminar die-flow, more radial expansion, more friction in die


- · Longer land length
- Tapered inlet
- · Lower temperature of barrel/ die plate

Vessel-type expansion

More turbulent die-flow, more longitudinal expansion, more slip in die

- · Higher rpm
- Sudden beginning of orifice (no smooth taper)
- · Low friction material (insert)
- Higher temperature of barrel/ die plate


Types of expansion

Influence of cutting

Backward expansion

- Backward side expands after cut
- Expansion contrary to product flow direction
- Backward side of product expands similar to forward side
- Forward side more roundish than backward side

Expansion and die design 31

Die calculations

baker perkins

(coperion

Title of Presentation

Die calculations

Designing die plates

For food products, merely rheological data available difficult to calculate and simulate product flow by viscosity data

Calculation of restriction against the flow inside die

- Scale up calculations where
 - die plate thickness changes
 - Extrudate size changes
- Comparison of different die plates/ shapes

$$Q = k_d \frac{p}{\mu_\alpha}$$

Die constant k_d

Indicates restriction against flow of specific die

Only applicable for simple forms

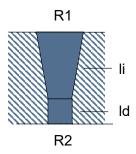
Only compare the die (die plate) not the product.

only to be compared for one and the same product

Expansion and die design 33

Die calculations

Die constant (k value) I – restriction of the die


Die constant k_d in mm³ (smaller k_d value = more restriction) All dimensions in mm

$$k_d = \frac{\pi \cdot R_d^4}{8 \cdot L_d}$$

$$k_{i} = \frac{3 \cdot \pi \cdot (R_{1} - R_{2})}{8 \cdot L_{i} \cdot \left[(1/R_{2}^{3}) - (1/R_{1}^{3}) \right]}$$

$$k_{t} = \frac{1}{\left[\left(1/k_{t}\right) + \left(1/k_{d}\right)\right]}$$

L_d = length of straight section (land lenght)

R_d (R2) = die radius in straight section

L_i = length of inlet taper

R₁ = die radius of inlet taper

R₂ = die radius of outlet taper

Die calculations

Thin slit die

$$k_d = \frac{w \cdot h^3}{12 \cdot L_d}$$

w = width of slit

h = thickness of slit

Rectangular die

$$k_d = \frac{\frac{w \cdot h^3}{L_d}}{12 + 16.6 \cdot \left(\frac{h}{w}\right)^{1.5}}$$

L_d = length of straight section

Thin annular die

$$k_d = \frac{\pi}{12 \cdot L_d} \times (R_0 + R_i) \times (R_0 - R_i)^3$$

R₀ = outer radius of ring

 R_i = inner radius of ring

Expansion and die design

35

Die calculations

Die constant (k value) III – restriction of the die

Die constant for total die plate

$$K_d = k_d \cdot n \quad [mm^3]$$

n = count of orifices on die plate

Die constant for multiple die plates in series

$$\frac{1}{K_{total}} = \frac{1}{K1} + \frac{1}{K2} + \dots + \frac{1}{Kn}$$

n = number of restrictions in flow path

Throughput in relation to total die constant:

$$m = \frac{m}{K_d} \left[\frac{kg}{h \, mm^3} \right]$$

m = throughput in kg/h

specific throughput:

keep m constant

Die calculations

Example calculation

baker perkins coperion

Lab extruder:

12 die holes

1,0 mm diameter orifice 1,5mm lendlength

Inlet taper 10,3 mm diameter (50°)

Full die plate thickness 11,5mm

Throughput 15 kg/h

Circular die kd =0,016 mm³

Inlet taper ki =0,069 mm³

die hole $kt = 0.013 \text{ mm}^3$

Whole die plate Kd= 0,159 mm³

Specific mass flow m*= 94,581 kg/h mm³

given values in black, calculated values in red

Production extruder:

100 die holes

1,5 mm diameter orifice 1,8 mm lendlength

Inlet taper 12,36 mm diameter

Full die plate thickness 13,5mm

Throughput 500 kg/h

Circular die $kd = 0.067 \text{ mm}^3$

Inlet taper $ki = 0,232 \text{ mm}^3$

die hole $kt = 0,052 \text{ mm}^3$

Whole die plate Kd= 5,286 mm³

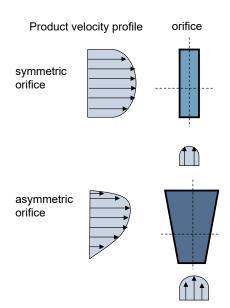
Specific mass flow m*= 94,581 kg/h mm³

Play with parameters to find suitable die plate. Observe type of expansion if applicable when choosing parameters

Expansion and die design 37

Shaping the product

Title of Presentation


Velocity profile

Higher product velocity in thicker die areas Non-uniform product flow

- Thicker/ more expanded parts; blurring of product shape
- Twisting product leading to 3D shaped product

baker perkins

(coperion

Expansion and die design 39

Shaping the product

Velocity profile

Film:

Extrudate twisting when exiting the die and expanding

Velocity profile

Bowl- shape formed by velocity difference in the flow

Expansion and die design 41

Shaping the product

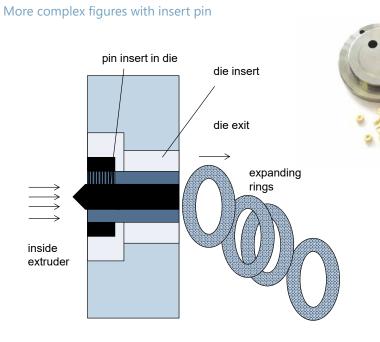
Flow balancing

Using the same principles, we can promote flow into a sheet, or other linear formats

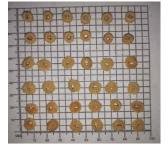
Velocity profile

Faster flow in the thick centre
Thicker product in the centre
More (radial) expansion than in edges

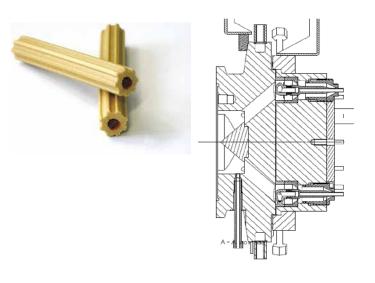
Die shape different than resulting product shape!!



Expansion and die design 43


Shaping the product

Coextrusion


"Filled ring extrusion"

Postcut (filled tube) or crimped (pillow type) product Filling mass

- Liquid for pumping, solid when cold
- Withstand high product temperature
- · Low water activity

Filling can be produced by second extruder

baker perkins

Expansion and die design

Shaping the product

Coextrusion

"If working with particle-ingredients: no particle larger than 1/3 of die diameter!

Risk of blockage

Avoid narrow corners in die shape design

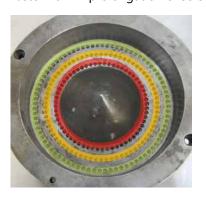
Risk of burnt (darker) edges

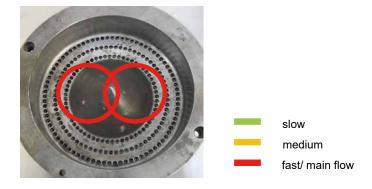
Avoid die holes too far at outside area of die plate

Less/slower flow in outer area stunded parts in extrudate

Expansion and die design 46

(coperion

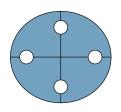

Different flow velocities of orifices



(coperion

baker perkins

Multiple orifice dies have a tendency of different flow velocities Concentric die plates have a superimposed difficulty Inner rows flow faster Faster flow in prolongation of screws

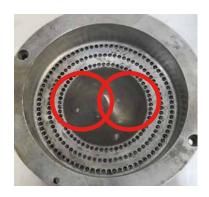


Expansion and die design 47

Shaping the product

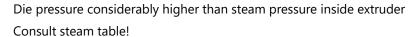
Different flow velocities of orifices

Caused by not suitable die plate design


Expansion and die design 48

Adjustment of flow velocities in orifices

Strainer plate and distribution cone
Shorter land length where flow is slower (less restriction)
Less die holes (more distance) where flow is slower
By screw profile



Expansion and die design 49

Shaping the product

Safety: prevention of steam blows

Steam table for saturated steam							
overpressure		temperature of saturated steam	enthalpy of water				
bar	kPa	°C	kJ/kg				
2,0	200	133,5	561				
2,5	250	138,9	584				
3,0	300	143,6	605				
3,5	350	147,9	623				
4,0	400	151,8	640				
4,5	450	155,5	656				
5,0	500	158,8	670				
6,0	600	165,0	697				

Contact

Tom Shipman

Process Engineer Cereal & Food Extrusion

Manor Drive

PE4 7AP Peterborough

Phone +44 (0) 7849 083885

E-Mail tom.shipman@coperion.com

Christian Hüttner

Senior Process Engineer Food Extrusion

Theodorstraße 10 70469 Stuttgart

Phone +49 (0) 711 897-3197

E-Mail christian.huettner@coperion.com

Rethink the way we eat!

Michael Walk

"We believe in challenging the status quo of plant-based food by making products that are delicious, clean and good for our planet"

vemiwa

A background that polarizes...

Start-up: Metzgersohn entwickelt vegane Fleischalternative

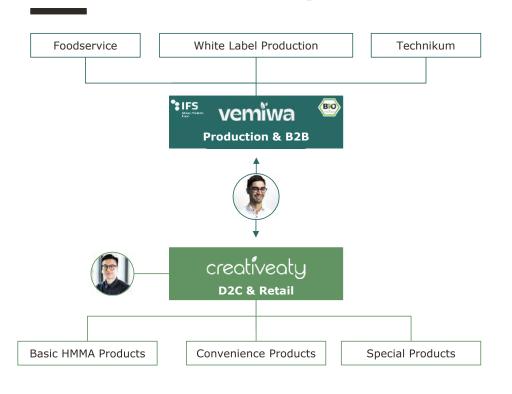
Ein veganer Leberkäs für die **CSU-Ministerin**

Gerlach kostet pflanzliche Wiesn-Brotzeit

Merkur.de

"Der Metzger-Sohn, der auf vegan macht": Bekannte Fleischerei-Kette aus Bayern bald mit Alternativ-Produkten

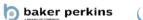
Focus: High Moisture Extrusion


vemiwa

One-Stop-Extrusion-Shop

One Mission, two companies

Development & manufacture of out of the box products on mass market scale



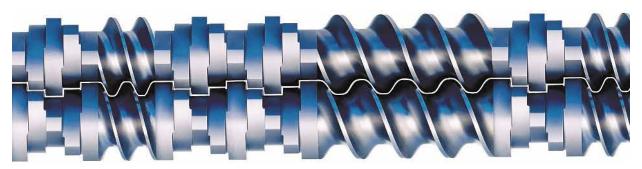
Rethink the way we eat!

- 1 Unit operations
- 2 Feed zone
- 3 Injection of liquids and steam
- 4 Cooking / plastification / melting
- 5 Mixing zone
- 6 Degassing and venting
- 7 Pressure build up zone
- 8 Example screw configurations

Process Design: From Unit Operations to Screw Profile

.

Unit operations


Process Design: From Unit Operations to Screw Profile

Working principle of a ZSK Extruder

- · Various unit operations subsequently and/ or parallel within one machine
- Configuration: Type and order of single screw elements define the impact
- Introducing directed mechanical energy into the product
- Thermal energy transfer

From Production process to Screw configuration baker perkins

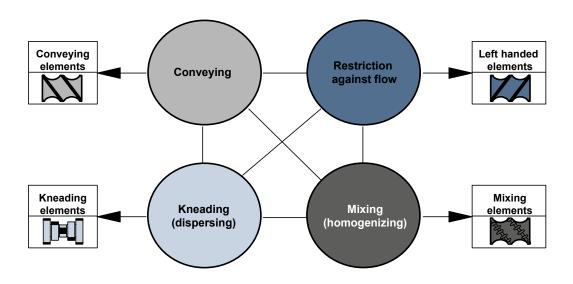
"Translation" work

- Understand the process and its steps
- Break down the process to unit operations
- From batch to continuous
- Include extrusion specific unit operations where necessary
- For trials with unknown and complex process
 - Start with the first few steps, optimize if necessary, then add next steps

Process Design: From Unit Operations to Screw Profile

Unit operations

- Intake
- Conveying
- Mixing
- Heating
- Cooling
- · Residence time (keeping)
- · Mechanical disruption/ destruction
- Melting
- Kneading
- Cooking
- Plastification
- Denaturization
- Hydratation


- Dispersion
- Devolatilization
- Degassing
- · Chemical reaction
- Crystallization
- Thermal reaction
- Heat treatment (pasteurization)
- Texturization
- · Pressure built up
- Forming
- · Expansion
- ...

Process tasks

baker perkins

(coperion

Realizing all required tasks with different types of elements

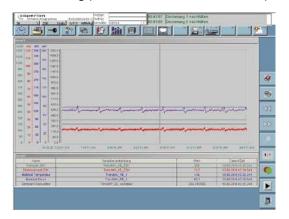
Process Design: From Unit Operations to Screw Profile

-

Feed zone

Intake and conveying of bulk material

Feeding of bulk and other educts

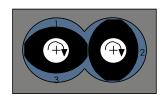


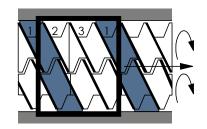
feeders

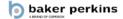
Equal flow of feeders enables equal flow of extruder

Correct positioning in case of feed limited throughput very important

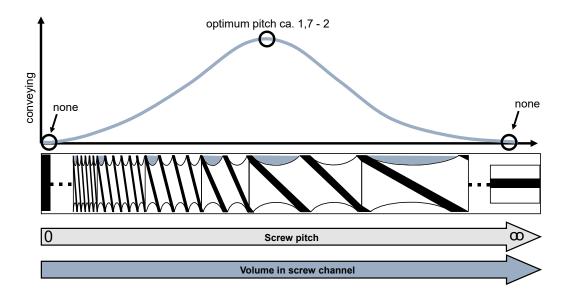
Good refilling procedure of feeder enables equal feeding // extruder flow


Process control panel
Torque in red
Pressure in violett
Feeder refill causing trouble


Intake of powder material



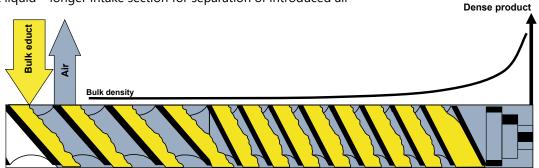
- Optimum pitch about 1,7D
- Barrel opening for three visible screw channels (2 Lobe)
- Powder should hit down turning (left) screw



Feed zone

Optimal pitch

Process Design: From Unit Operations to Screw Profile


11

Feed section

- Take powder into the screw channels
- Transport away the powder
- Outlet for introduced air (between the particles of the powder)
- Air flows back through screw channels
- If without liquid longer intake section for separation of introduced air

Process Design: From Unit Operations to Screw Profile

Problems in powder intake

Low bulk density powder Fine particle size powder Without liquid addition

Consider:

Conveying efficiency

Available free volume (pitch of screw)

For difficult raw materials:

machine with large $d_{\text{o}}/d_{\text{i}}$ ratio (ZSK MEGA Volume for food products) upstream venting longer intake zone

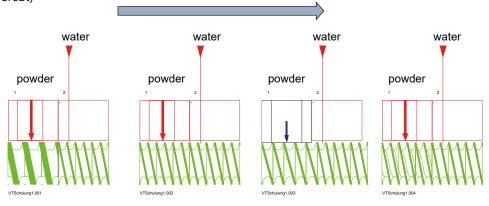
Process Design: From Unit Operations to Screw Profile

side feeding unit ZS-B

14

(coperion

Lay out of feeding zone


Examples ZSK 43Mv

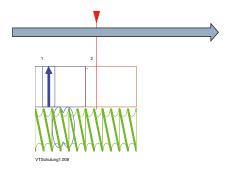
- 54/54 SF pitch 1,25
- 54/54 pitch 1,25
- 72/36 pitch 1,67 plus larger opening in barrel

• 54/54 SK (undercut)

o baker perkins

Process Design: From Unit Operations to Screw Profile

Feeding Zone with sidefeeder ZS-B


baker perkins

Twin screw side feeding device

Increased product intake by sidefeeder

- Screws with very large free volume do/ di = 2,0
- Sidefeeder screw speed independent from extruder screw speed
- Upstream opening in extruder barrel for venting of introduced air

Process Design: From Unit Operations to Screw Profile

16

Intake

Product falls from feeder onto left screw

open design feed hopper With suction port (downstream side)

Minimized falling height from feeder to the extruder screws

Process Design: From Unit Operations to Screw Profile

Powder inlet

baker perkins

Venting: air stream coming out of inlet hopper

Process Design: From Unit Operations to Screw Profile

19

Extrusion Plant ZSK 43Mv

KT 35 Coperion Ktron powder feeder Powder falling height minimized Dust filter on inlet hopper Loss-in-weight water feed pump

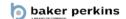
Process Design: From Unit Operations to Screw Profile

Injection of liquids and steam

Process Design: From Unit Operations to Screw Profile

Injection of liquids and water

As soon as possible after bulk product
Better conveying (stickier)
Higher density
Separation solids form air
Water injection: barrel temperature below 100°C


In partly filled zones pressure less possible

In more filled zones or zones with possible pressure or smearing of injection port

use WP-injection nozzle and pressure built up feeding pump

Versatile R&D lab extruder

ZSK 27Mv

Multiple openings for

- · Liquid injection
- Side feeder
- Intake openenings

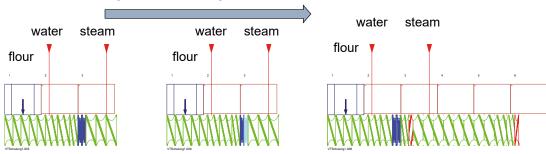
Openings, which are not in use, are plugged

Process Design: From Unit Operations to Screw Profile

23

Steam injection

Process section has to be vapour proof (blocked by product inside the screw channels)


Prevent vapour from escaping via feed hopper to feeder

Seal the extruder with 100% filled screws

Adjust steam pressure

Low degree of fill in the extruder \improx More difficult to seal (small throughput/ high rpm)

Allow vapour to condensate in large zone of low degree of fill

Process Design: From Unit Operations to Screw Profile

Steam injection

Extruder not sufficiently sealed

Upstream leakage: Sudden blow

baker perkins

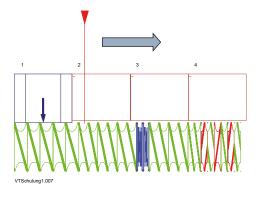
Slow back flow

Process Design: From Unit Operations to Screw Profile

25

(coperion

Cooking / plastification / melting zone


Standard cooking combination

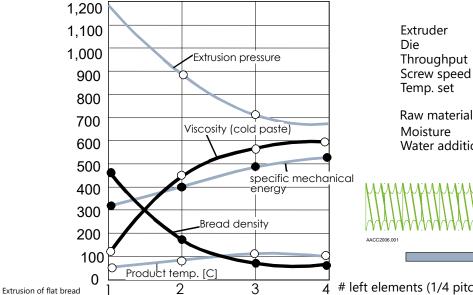
Right-left combination

Mixing zone with small right kneading blocks

High shear left elements

90° stagger of left (reverse) elements to prevent from burnt material in recesses

Process Design: From Unit Operations to Screw Profile


Variation of energy intake:

- · Variation of count of left elements (max. 5)
- Longer distance between left elements (reduced shear)
- Kneading blocks upstream of left elements (increased shear)
- Two left elements consequently (much increased shear)

27

Impact of left handed elements

Effect of different screw configurations

🕠 baker perkins

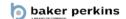
CONTINUA

1 X 55 mm

15 kg/h

190 RPM

(coperion


150° C Raw material Wheat flour 550

14.0% Moisture Water addition 4.5%

left elements (1/4 pitch length)

Process Design: From Unit Operations to Screw Profile

Working principle of screw elements

Dispersive mixing (= destroying of particles/ droplets)

Destroying of particles: big kneading blocks with thick crests; small stagger (prevent from flowing/slipping through)

Micronisation of droplets:

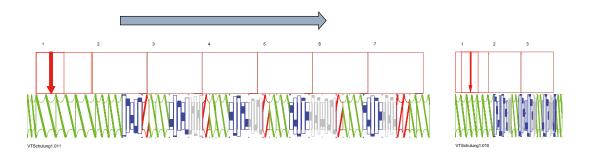
Process Design: From Unit Operations to Screw Profile

29

Conditioning of other matrices

By means of kneading blocks

e.g. melting of sugar matrices, "milling" of particles, ...
In general: shear by means of restriction against material flow
The more restriction the more shear
The bigger the crests of kneading blocks the more shear
The longer the residence time in the element the more shear



Typical element combinations

Right - left

Right - neutral - left

Right – neutral

Process Design: From Unit Operations to Screw Profile

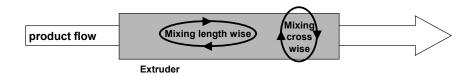
Mixing zone

Process Design: From Unit Operations to Screw Profile

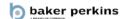
Working principle of screw elements

Distributive mixing (displacement of particles/ droplets)

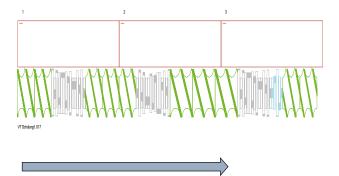
Mixing length wise/axial

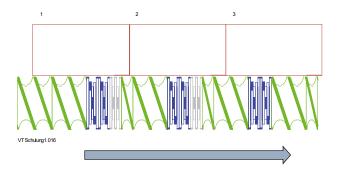


larger residence time and larger residence time distribution neutral kneading blocks, left handed kneading blocks, SME*, ZME, TME


Mixing cross wise/ radial

more narrow residence time distribution, shorter residence time right handed kneading blocks (30°, 45°), sieve discs, TME (right hand turbine) (to a lower degree all forward conveying elements)


Mixing zone



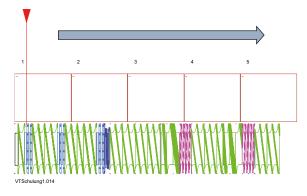
Intensive distributive for particles, dispersive for emulsions

Distributive mixing radial: kneading blocks with smaller stagger
Distributive mixing axial: neutral kneading blocks
e.g. building of new surfaces for reactive extrusion, emulsion forming...

Process Design: From Unit Operations to Screw Profile

33

Mixing with non-self wiping elements

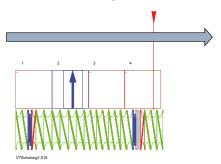


High shear dispersive and distributive mixing/ emulsion forming Liquid injection into pressure zone possible

TME elements

ZME elements (single flighted left hand, cut crests)

Process Design: From Unit Operations to Screw Profile


Degassing and venting

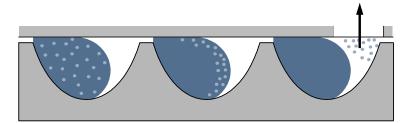
Process Design: From Unit Operations to Screw Profile

Degassing

- Getting rid of excess water or undesired volatiles
- Closing the screw by product dams for vacuum degassing
- "Pressure less" zone with low degree of fill in screws
 (partial pressure of volatiles!)
- Atmospheric venting without dams possible

Process Design: From Unit Operations to Screw Profile

(coperion


Remember:

Gas volume increases with decreasing pressure (vacuum)

[gas volume to be transported away]

Partial gas pressure increases by decreasing pressure (vacuum)
[driving force]

Degassing principle

residence time viscosity of mass thickness of mass layer renewal of mass surface pressure difference

long degassing zone low viscosity (= high temperature) low fill factor of the screw (40%) intensive mixing vacuum

Process Design: From Unit Operations to Screw Profile

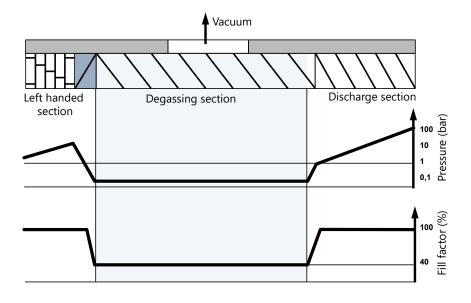
coperion

Separation of gas from plasticized product by diffusion

Gas has to come to the surface of the mass layer.

3

Atmospheric venting of water vapour



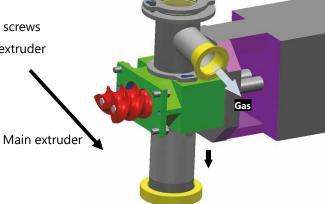
Process Design: From Unit Operations to Screw Profile

Degassing section

Good to know

Plastified mass also degassed in partly filled screw channels in closed barrel sections upstream and downstream of the vent opening

Process Design: From Unit Operations to Screw Profile

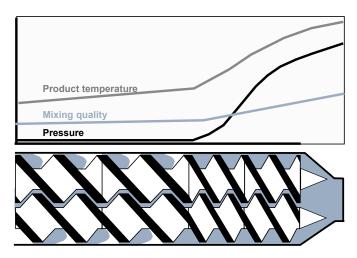

39

Degassing by twin screw side degassing

- ZS-EG
- Twin screw side degassing unit
- For difficult to handle products
- Mass stuffed back into main extruder by side screws
- No burnt particles can fall back down to the extruder

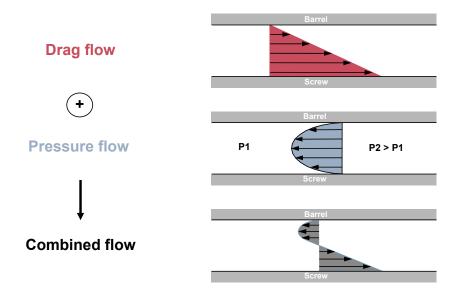
Process Design: From Unit Operations to Screw Profile

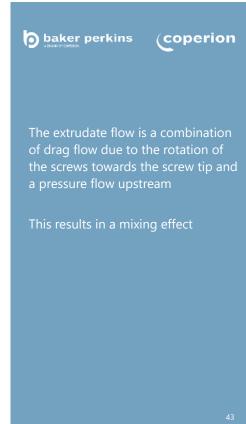
Pressure build up zone



Process Design: From Unit Operations to Screw Profile

Pressure build up zone





- Pressure build-up to pump mass through die plate / discharge
- · Screws fully filled

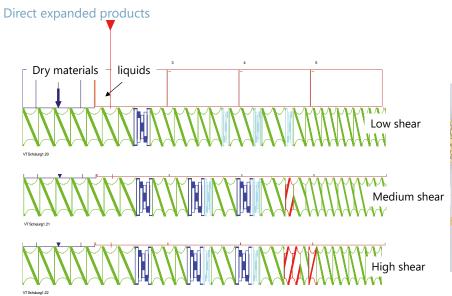
Pressure build up zone

Pressure build up zone

Process Design: From Unit Operations to Screw Profile

General layout information

- Use elements with high conveying efficiency
- Small pitch for better pushing
- Caution with single-flighted and little dead space: pulsations possible
- Prevent filled length from unwillingly arriving cooking (shear) zone
- Dead space creates more pressure built up
- Dead space can reduce pulsations



Example screw configurations

Process Design: From Unit Operations to Screw Profile

Screw configuration examples

Cooking/ Plastification

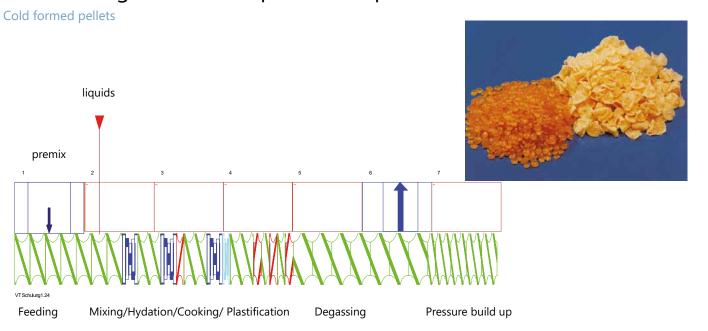
baker perkins

Pressure build up

Process Design: From Unit Operations to Screw Profile

Mixing/Hydation/

Feeding


46

(coperion

Screw configuration example for half products

Process Design: From Unit Operations to Screw Profile

- 1 Water
- 2 Starches
- 3 Proteins
- 4 Sugars
- 5 Fibers
- 6 Minor Ingredients
- 7 Basic Recipes

Recipe Ingredients in Food Extrusion 30.10.2025 2

Ingredients Overview

baker perkins

Categorized based on their function

Major Ingredients

Matrix Forming Ingredients

- Starches and flours
- Proteins
- Sugars

Filling Ingredients

- Fibers
- Bran
- Some Proteins

Water Steam

Minor Ingredients

Plasticizers

- Oil
- Emulsifiers
- Polyols (Glycerol...)

Coloring Ingredients

- Food coloring
- Reducing sugars
- Milk powder
- Cocoa

Flavoring Ingredients

- Spices
- Flavors
- Fruit concentrates
- Sugars
- Salts

Recipe Ingredients in Food Extrusion

30.10.2025

(coperion

Water

extrusion processes

Essential for the majority of food

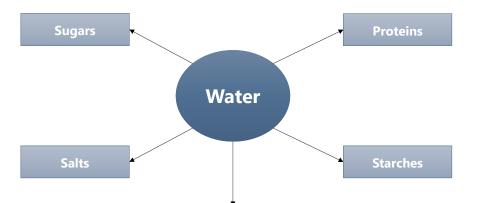
baker perkins

Recipe Ingredients in Food Extrusion

Water in Food Extrusion

Neither too little nor too much

· Natural food polymers are not thermoplastic



- Almost all food extrusion processes need addition of water (otherwise burnt product)
 - an elastic mass or hydrated dough can be formed in the ZSK
 - water allows plasticizing the raw materials
 - water allows physicochemical reactions (gelatinization of starch, texturization, ...)
 - water is the basis for expanded extrudates (cereals, snacks, TVP, ...)
- **Steam** acts both as plasticizer and thermal energy input. when steam is added in addition to water, water addition must be reduced.

Recipe Ingredients in Food Extrusion 30.10.2025 5

Water Availability

All ingredients interact with water!

Fibers

coperion

Water binding influenced by

- Temperature
- Molecular structure
- Molecule affinity to water

Recipe Ingredients in Food Extrusion 30.10.2025 6

Starches

Recipe Ingredients in Food Extrusion

Molecular Structure

Polysaccharide with numerous glucose units joined by glycosidic bonds

Amylose

Linear, low molecular weight biopolymer

Amylopectin

Branched, high molecular weight biopolymer

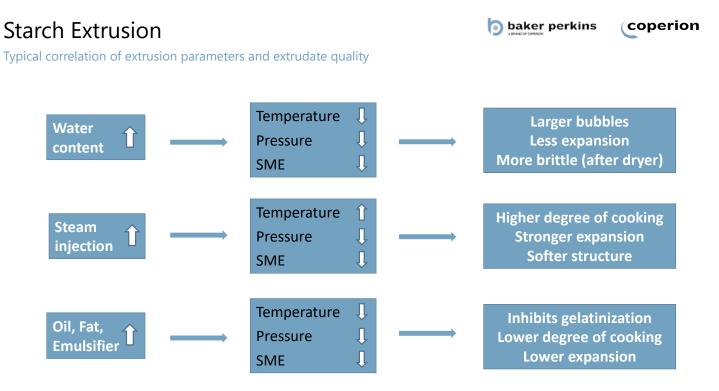
Recap from "Process Opportunities"

- Amylose and amylopectin are tightly packed in native starch granules
- They have a semi-crystalline form
- To exert functional properties and to interact with water and other molecules, they must be transferred to an amorphous state

Recipe Ingredients in Food Extrusion 30.10.2025

Amylose vs. Amylopectine

Effects on extrusion and extrudate quality


High Amylose Content

- Increased hardness
- Decreased expansion (compared to high amylopectine)
- More resistant to shear

Amylopectine

- Light, elastic but more brittle extrudates
- · Increased expansion
- Higher cold paste viscosity in modified starches
- Branched molecules are easily degraded by mechanical shear stress

Recipe Ingredients in Food Extrusion 30.10.2025 9

Recipe Ingredients in Food Extrusion 30.10.2025 10

Starch Extrusion

baker perkins

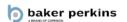
Same ingredients: which parameter(s) were changed?

Sample A Sample B

Recipe Ingredients in Food Extrusion 30.10.2025 1

Starch Extrusion

Different behaviour of flours at same processing parameters


Extruded rice flour

- Torn shape
- Crispy texture

Extruded wheat flour

- Keeps shape best
- No crispy texture

Extruded corn flour

- More longitudinal expansion
- No crispy texture

Each raw material needs individual optimization of process parameters

Recipe Ingredients in Food Extrusion 30.10.2025 12

Starch Extrusion

baker perkins

Different behaviour of flours at same processing parameters

Sample		rice	wheat	corn
screw speed [min ⁻¹]		350	350	350
torque	[%]	47	43	41
throughput	[kg/h]	109	109	109
S-mech	[kWh/kg]	0,103	0,094	0,090
T _{m1}	[°C]	160	159	153
p_1	[bar]	64	70	49
flour	[kg/h]	100	100	100
water	[kg/h]	9	9	9
summation	[kg/h]	109	109	109

Type	% Amylose	% Amylopectin
Corn	27	73
Rice	17	83
Wheat	24	76

Observation

- Both wheat and corn would need less water addition for crispy texture. They have less amylopectin than rice.
- Torque was highest for rice, which has most amylopectin.

Recipe Ingredients in Food Extrusion

30.10.2025

13

Starch Extrusion

Influence of particle size

Wide particle size distribution

- Reduced expansion
- · Increased bulk density of extrudate

Larger particles

- More time / higher temperature needed for hydration (starting to be relevant above 500 µm)
- · Milling energy

(for example, if pellets of several mm size are milled and crushed)

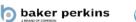
- typically, there is no significant difference in SME
- on very small extruders, pellets can result in torque peaks

baker perkins

Recipe Ingredients in Food Extrusion

30.10.2025

Proteins



Recipe Ingredients in Food Extrusion

Protein Powders

Feeding to extruders

- Can have low bulk density
- Can have very small particle size
 3 µm (especially after dry fractioning process)
- · Can stick to the hopper walls due to adhesive or electrostatic forces
- · Can fluidize at high extruder screw speeds
- · Advantage of high free screw volume of MEGAvolume extruders
- Feeding of protein powders as pellets is possible to extruders
- Mixtures of different proteins or proteins with coarser materials

Recipe Ingredients in Food Extrusion 30.10.2025

Proteins

Effects in starch-based extrusion

Different effects, depending on protein type

- Corn flour extrusion: less protein content
- Wheat flour extrusion: addition of soy protein
- Wheat flour extrusion: addition of gluten

increased expansion

increased expansion

decreased expansion more stable shape

Remember:

Extruded wheat flour

Kept shape best

Recipe Ingredients in Food Extrusion

30.10.2025

17

Sugars

or sugar-like ingredients

Recipe Ingredients in Food Extrusion

Extrusion of Sugar and Sugar-like Ingredients

- The typical unit operation is melting sometimes combined with dissolving and mixing
- SME might be estimated:
 Melting enthalpy + warming enthalpy (dominant)
 plus: energy for mixing + energy for pressure build-up
- Possible energy input by mechanical energy is limited (the melt is low viscous)
- Sugar particle size distribution should be very narrow (hence all particles melt at the same point of the screw)

30.10.2025

Extrusion of Maltodextrin

Recipe Ingredients in Food Extrusion

- · Maltodextrin: oligosaccharides obtained by partial hydrolysis of starch
- Classification by DE-value (dextrose equivalent)
 - low DE (3 10): long molecules, more starch like behavior
 - high DE (10 20): short molecules, more sugar like behavior
 - Lower glass transition temperature (of extrudate)
 - Cold water solubility
- Different maltodextrin types:
 - => different behavior in the extrusion process
- Versatile application in the food industry. most common extrusion application: Encapsulation and confectionary extrusion

Maltodextrin

Amylose Amylopectin

Recipe Ingredients in Food Extrusion 30.10.2025 20

Sugars

baker perkins

Effects in non-sugar-based extrusion

Addition < 10 %

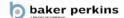
- minor influences on process
- reduced expansion
- more crispy bite of direct expanded cereals / snacks

BUT:

Reducing sugars result in browning (Maillard reaction)

- glucose, lactose, maltose, fructose ...
- desired effect: glucose added to extruded breadcrumbs
- undesired effect: TVP browning > 160 °C

- dough / melt viscosity decreases significantly
- mechanical energy input is reduced significantly
- starch gelatinization is inhibited


Recipe Ingredients in Food Extrusion 30.10.2025 21

Fibers

Recipe Ingredients in Food Extrusion

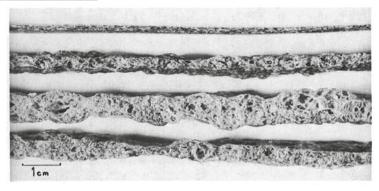
Fibers

Definition and why are they interesting for food extrusion?

- Fibers in food extrusion are typically organic materials which are dispersed in the continuous phase (matrix)
 - insoluble fibers (carbohydrates in plant cell walls)
 - cellulose, hemicelluloses and lignin
 - soluble fibers
 - inulin oligofructose, beta-glucans, pectin, gums, dextrin,...
- · Found in bran, hulls, seeds, stalks, leaves...
- Functional effect (water binding)
- · Nutritional benefit of fibers
- Fibers as low-price fillers

Recipe Ingredients in Food Extrusion

30.10.2025


Fibers

Effects in flat bread extrusion

)	
Formula	Bran	Starch	Gluten
I	50	40	10
II	30	60	10
III	10	80	10
IV	30	70	

Y. ANDERSSON, B. HEDLUND, L. JONSSON, and S. SVENSSON, SIK—The Swedish Food Institute, S-400 23 Götebore, Sweden

Recipe Ingredients in Food Extrusion 30.10.2025 24

Fibers

Other effects

baker perkins

Expanded Extrudates:

- Act as nucleation agents for expansion bubbles (finer pore structure)
- Similar effects of insoluble proteins or resistant starches

2 % Wheat fiber

Texturized Proteins:

 Promote fibrous textures (dispersion of insoluble fiber in the continuous phase)

Recipe Ingredients in Food Extrusion 30.10.2025 25

Minor Components

Recipe Ingredients in Food Extrusion

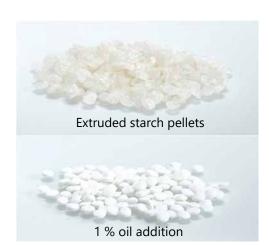
Plasticizers

Examples

- · Decrease viscosity, glass transition temperature and tensile strength
 - mainly by weakening molecular interactions
 - or due to their lower melting point or viscosity
- Glycerol, sorbitol, oils, ...
- · Can (partly) replace water
 - e.g., glycerol in pet treat formulations
- Emulsifiers also act as plasticizer, besides their emulsification function
 - monoglycerides of fatty acids, sodium stearoyl lactylate, lecithin

Recipe Ingredients in Food Extrusion 30.10.2025 2

Plasticizers


Effects in food extrusion

- minor influences on process
- Addition 0.5 5 %
 - dough / melt viscosity decreases
 - mechanical energy input is reduced
 - reduced expansion
 - reduced texturization but smoother surface, better die flow
- Addition 5 10 %
 - dough / melt viscosity decreases significantly
 - mechanical energy input is reduced significantly
 - starch gelatinization is inhibited
- Addition 10 20 %
 - very challenging for processes which need SME or starch gelatinization
 - partial help by use of emulsifiers

Recipe Ingredients in Food Extrusion 30.10.2025 28

Minerals and Salts

- NaCl:
 - addition of 1 1,5 % for flavoring. Mostly little influence on process.
- CaCl₂:
 - Ca-ions can form strong ionic bonding in food polymers result in more firm textures
 - alginate, pectin, proteins
- NaHCO3 or baking powder:
 - finer expansion pores and lighter color
- CaCO₃:
 - nucleation agent for direct expanded extrudates => finer expansion pores and lighter color
- · pH value of process has influence on product quality
 - proteins have lowest charge at isoelectric point
 - limited flexibility in terms of using low or high pH in foodstuff
- · Tap water quality:
 - demineralized versus Stuttgart tap water: no significant influence on HMMA quality

Recipe Ingredients in Food Extrusion 30.10.2025 25

Coloring Ingredients

All sorts of food colorings might be used in the extrusion process

Considerations:

- temperature or oxidation stability might be an issue
- Individual evaluation necessary, considering the short residence time in extrusion
- increased cleaning efforts
- extrudate can be used in less end products (compared to a basic HMMA which is marinated downstream)

Examples:

- CaCO₃: lighter color
- · Oils or fats: lighter color
- Reducing sugars for Maillard browning (e.g., milk powder)

HMMA with curcuma powder

Recipe Ingredients in Food Extrusion 30.10.2025 30

Flavoring Ingredients

Generally, minor effects due to minor addition

Considerations:

- temperature or oxidation stability or protein-flavor interactions
- increased cleaning efforts
- extrudate can be used in less end products

But:

- Flavors with fatty acids or oils can influence HMMA extrusion process for example
 - die flow, energy input, texture

Soy based HMMA

+ 1 % flavor

Recipe Ingredients in Food Extrusion 30.10.2025 31

Basic Recipes

Recipe Ingredients in Food Extrusion

Basic Recipes

		% by weight		
Group	Ingredients	Product A	Product B	Product C
Structure forming materials	Wheat flour	72/	- 3	70.0
	Maize grits	85.0	50.0	
	Potato granules	(2)	20.0	5
	Potato starch		6.0	27
Dispersed phase filling materials	Soya protein			5.0
	Wheat gluten		2.0	
	Wheat bran	(#1		10.0
Plasticisers and	Oil (soya, palm,rape)	1.0	1.5	1.0
lubricants	Emulsifier	0.3	0.3	0.3
	water	18.0	18.0	16.0
Nucleating reagents	Sugar	*		5.0
	Maltodextrin	93	5.0	7
	Sait	1.0	1,0	1.5
	Flavourings			*
Flavouring agents	Baking powder	4/	1.5	2
	Dicalcium phosphate			1.5
Colouring agents	Milk powder	1.0	2.0	2.5
	colour			

Product B:

- Gluten: nicer shape
- Baking powder: finer pores

Product C:

 Soy and bran for desired expansion

FRAME N.D.: The technology of extrusion cooking, p.53, 1994

Recipe Ingredients in Food Extrusion 30.10.2025 33

Basic Recipes

Extruded Breakfast Cereals

		% by weight		
Group	Ingredients	Product A	Product B	Product C
Structure forming materials	Wheat flour	15.0	19	20.0
	Rice flour	<u> </u>	85.0	30.0
	Oat flour	i .		35.0
Dispersed phase filling materials	Soya flour	2.0		
	Wheat gluten	9	2.0	.=:
	Wheat bran	70.0	¥	9
Plasticisers and lubricants	Oil (soya, palm,rape)	0.5	0.5	1.0
	Emulsifier	0.3	0.5	0.3
	water	18.0	18.0	16.0
Nucleating reagents	Sugar	10.0	5.0	10.0
	Maltodextrin		5.0	: .
	Salt	1.0	1.0	1.2
Flavouring agents	Baking powder			1.5
Colouring agents	Milk powder	1.0	2.0	2.0

Product A:

- · High bran cereal
- Oil/emulsifier and soy for optimized shape

Product B:

· Crispy rice cereal

Product C:

- High sugar cereal
- Baking powder for better expansion

FRAME N.D.: The technology of extrusion cooking, p.54, 1994

Recipe Ingredients in Food Extrusion 30.10.2025 34

Basic Recipes

Extruded Breakfast Cereals

baker perkins

(coperion

Rice crispy without sugar

Ingredient	%
Rice flour	81.0
Barley malt flour	17.8
Salt	1.2

Recipe Ingredients in Food Extrusion

Oat loop

Ingredient
Wholegrain oat flour
Corn flour
Sugar
Calcium Carbonate
Salt

% 70.0 25.3 4.0 0.5 0.2

Multigrain flake

Ingredient	%
Whole wheat flour	76.6
Whole rice flour	10.1
Polydextrose	9.0
Oat fibre	4.0
Salt	0.3
Sucralose	0.02

30.10.2025

025 3

Basic Recipes

Texturized Proteins

Pea based HMMA

Dry Premix:	
Ingredient	%
Pea protein isolate	87
Pea fiber	12
Salt	1

~55 % water addition on top into the extrusion process

Recipe Ingredients in Food Extrusion

Soy and wheat TVP

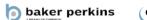
Dry Premix:
Ingredient %
Soy protein isolate 72
Vital wheat gluten 18
Starch 10

~30 % water addition on top into the extrusion process

30.10.2025

Summary

baker perkins


Recipes and extrusion in a nutshell

- Define the basic recipe, first simple then complex
- Understand the properties and function of the ingredients in the extrusion process
- Design the process and its parameters accordingly
- Do trials and optimize based on the results
- Be aware of unpredictable interactions

Recipe Ingredients in Food Extrusion 30.10.2025 3

- 1 Extrusion of Breakfast Cereals Processing of Starch
- 2 Pre-Extruder Ancillaries Conditioning Material and Addition of Colours
- 3 Post Extruder Ancillaries Extruder Process Additions and Downstream Processing
- 4 Breakfast Cereal Case Studies Methods of Cornflake Production

Extrusion Processing of Breakfast Cereals and Ancillary Equipment

14/11/2024

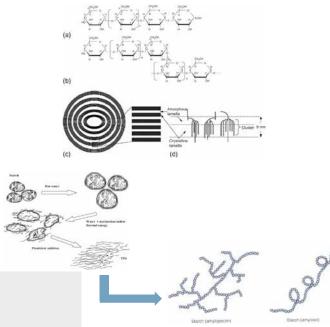
Extrusion of Breakfast Cereals

Extrusion Processing of Breakfast Cereals and Ancillary Equipment

Starch Cooking

Starch Structure Recap

Transformation from Crystalline to Amorphous


Native (raw) starch is in a crystalline form. It consists of tightly packed chains of amylose and amylopectin. Because they are tightly packed, digestive enzymes (e.g., amylase) cannot access the starch biopolymers, and so it cannot be digested effectively. It must first be cooked.

Gelatinisation: When starch is heated in an excess of water, the starch granules start to break apart and take on water. The water is able to bind in between the previously inaccessible strands.

The granules swell until they burst, and the starch chains leach out into the liquid, and viscosity increases as the biopolymers form a network, entrapping water.

Starch requires heat and water to unlock its functionality and digestibility.

baker perkins

Extrusion Processing of Breakfast Cereals and Ancillary Equipment

14/11/2024

(coperion

Starch Cooking in Extrusion

Finding a Balance Between Heat and Shear

- In the extruder, there is much higher shear, and lower water content than in traditional cooking.
- This leads to dextrinization, where granules are mechanically sheared, allowing faster water take up than in traditional cooking, providing an efficient starch cooking process. This also causes browning and the 'cooked flavour', along with Maillard browning.
- The breakdown of the starch chains acts as a bell curve when compared to expansion. Most processes promote expansion and a crisp product by shearing the chains, reducing the physical disentanglement that may prevent a light expanded product from being formed.
- The greater the shear a product is subjected to, the greater the 'friable' nature of the product ex-die. The starch chains can no longer form a strong structure, and aspects such as gel formation and glass transition temperatures are reduced.
- Gentle processing (reduced shear, increased water), or even preconditioning can help with troublesome materials.

baker perkins

Conclusion box

Extrusion promotes a light texture in breakfast cereals by providing shear energy during the cook. This allows some breakdown of the starches to allow for browning and a light texture. This must not be overdone, as the product will become soft and collapse easily. Processes can be controlled to find the correct balance.

14/11/2024

(coperion

2.4

Extrusion Processing of Breakfast Cereals and Ancillary Equipment

Starch Cooking with a Preconditioner

Specific Processes and Difficult Materials

Pre-conditioners help induce the cooking of starch by introducing heat to the system early. This can allow the material to be fed at a higher throughput.

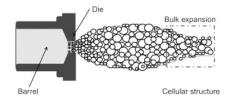
This also helps replicate conventional gelatinisation. The starch has an opportunity for the granule to swell and burst with heat and water.

Pre-conditioners are useful for:

- Single-extruder cornflakes
 - · Allows cook to start earlier
- Difficult materials such as oat
 - The higher fat content of oat can cause issues. If overworked, it can fractionate out and cause shearing issues in the barrel. A pre-cook helps with both feeding into the barrel and provides a gentler process to help this.
- Very high throughput requirements
 - Starting the cook earlier means a shorter residence time is possible.

🕠 baker perkins

Extrusion Processing of Breakfast Cereals and Ancillary Equipment


14/11/2024

Controlling Texture

- By controlling the transformation of starch, the viscoelastic properties of the extrudate can be controlled.
- Key parameters include dry feed rate, water feed rate, screw speed, screw configuration, barrel temperature, and die aperture diameter/land length.
- E.g., increasing the water will typically lower the viscosity of the extrudate, leading to greater recoil following expansion, thus increasing the bulk density, creating a coarser cell structure and harder textures.
- Increasing the screw speed will lower the bulk density, as the increased shear causes more work in the barrel, which provides a more intense cook, promoting bubble formation and a lighter texture.
- The addition of calcium carbonate to the blend provides inorganic nucleation sites, promoting a lighter, finer structure.

Conclusion

Twin-screw extruders offer detailed process parameter control, which allows for the creation of a versatile portfolio of products.

Extrusion Processing of Breakfast Cereals and Ancillary Equipment

14/11/2024

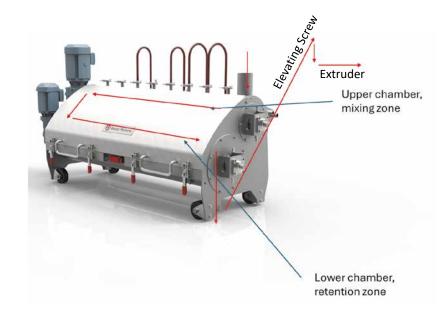
Pre-Extruder Ancillaries

Extrusion Processing of Breakfast Cereals and Ancillary Equipment

Preconditioner

baker perkins

(coperion


Cereal and other food extrusion products

Process Challenges

- · Difficult materials
- · Homogenous output
- Hygiene
- · Stack height

Baker Perkins' Solution

- Floor mounted unit machines
 - o Accessible height
 - o Transport to wash down area
 - Only used when needed

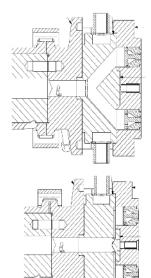
🕠 baker perkins

14/11/2024

(coperion

9

Extrusion Processing of Breakfast Cereals and Ancillary Equipment


Spectrum Colour Change Skid

Cereal and other food extrusion products

Application technicalities

- Reduced volume die assembly
- · Sequencing programme
- 3 primary colours, plus a 4th tertiary colour
- Easily retrofittable

Value can be added to products by injecting colours

Any spectrum of colours can be programmed e.g. shades of brown

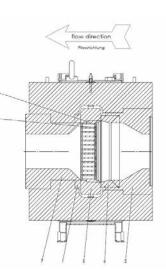
Extrusion Processing of Breakfast Cereals and Ancillary Equipment

14/11/2024

Post Extruder Ancillaries

Extrusion Processing of Breakfast Cereals and Ancillary Equipment

Screen changing


Other food extrusion products

Process benefits

- Continuous processing of cooked grains
- Removes fibre / bran
- Mesh ¼ die size
- Pressure monitoring for screen change

Extrusion Processing of Breakfast Cereals and Ancillary Equipment

14/11/2024

Sheeting Die and Rotary Cutter

baker perkins

coperion

Other food extrusion products

Process Technology

- Rotary cutting is Biscuit technology dough cutting
- Used for snack type products
- A cutting roll acts on a rubber covered anvil roll
- A separate embossing roll can also be integrated to add to the product form or ensure even cooking
- Rolls are easily removable for different products

> Further processing required!

The dough leaves the die in an uncooked state, the extruder is performing a mixing and forming action only

Extrusion Processing of Breakfast Cereals and Ancillary Equipment

14/11/2024

1:

Co-Extrusion

Cereal and other food extrusion products

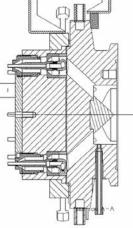
Technical challenges & solutions

- Flow control & seam position
- Filling material viscosity and Water activity properties
- Crimping / cutting / forming
- Roll phasing & gap control
- Shapes are also possible

Other types of co-extrusion

It is even possible to couple two extruders together for specific co-extrusion applications!

Extrusion Processing of Breakfast Cereals and Ancillary Equipment



14/11/2024

Coating

Cereal and other food extrusion products

aker perkins

Purpose

- · Protect heat/shear sensitive ingredients
- Flavour
- Visual appeal
- Improve Bowl life

Technical challenges

- Spray nozzles
- Challenging shapes
- Product temperature
- · Retention time
- Product build-up

Extrusion Processing of Breakfast Cereals and Ancillary Equipment

Types of Coating

Savoury

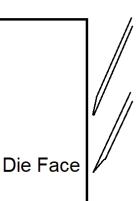
- · Atomised oil & apply seasoning
- Electrostatic charge & apply seasoning (SAS)

Sweet

- Syrup preparation skid sugar/sugar free
- Glaze 72% Brix
- Frosting 82% Brix

Vitamin sprays are also commonly used to fortify cereals

14/11/2024


(coperion

Product Cutters

Cereal and other food extrusion products

Die Face Extrudate Cutting

- Solid vs Flexible blades
- Changing the angle of attack
- Translating vs Fixed
- Off-centre axis
- Steam condensate management

🕠 baker perkins

Which blade should I use?

There are many factors to consider; blade life, material, design, product definition

Extrusion Processing of Breakfast Cereals and Ancillary Equipment

Downstream Cutters

- Lawnmower / Helical
- Windmill

14/11/2024

Flaking Mill

Cereal products

Process details

- The pellets are flaked between a set of rolls
- The gap is hydraulically controlled to maintain flake thickness
- · The rolls are cooled to prevent sticking
- Vibratory or grooved roll feed to efficiently feed grits across the full roll width

aker perkins

Fun Fact

One corn grit requires the equivalent of 69 tonnes to be squashed into a flake!

Extrusion Processing of Breakfast Cereals and Ancillary Equipment

14/11/2024

(coperion

17

Toasting

Cereal and other food extrusion products

Purpose

- A toaster serves multiple functions, in some types of flakes, trapped moisture may puff, causing a lighter texture, e.g. MultiGrain flakes.
- It also reduces the moisture to a point where it is shelf stable
- Once the moisture is at the correct level, the application of heat then also leads to glycation between reducing sugars and proteins, resulting in a lightly toasted flavour and colour

baker perkins

coperion

Process

- 2 discreet zones
 - o Z1 Higher Temperature Blistering / Texture
 - Z2 Lower Temperature Colour / Flavour / Moisture

 A vibratory conveyor helps to transport the product through the toaster and promotes a 'fluid bed' of material for even toasting

Extrusion Processing of Breakfast Cereals and Ancillary Equipment

14/11/2024

Breakfast Cereal Case Studies

Extrusion Processing of Breakfast Cereals and Ancillary Equipment

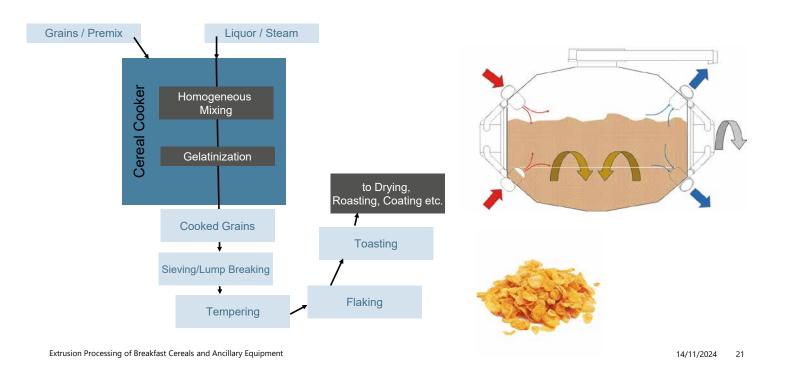
Case Study: Cornflake Types and Process

- Traditional cornflakes. Cooking, Drying & tempering, flaking, toasting
 - The highest quality cornflakes but requires a large amount of plant space and is time intensive. Highest capital expenditure.
- Pelletised cornflakes. Pellet extrusion, tempering, flaking, toasting
 - Slightly lower quality flakes, requires an extruder. Lower footprint and capital cost.
- Direct Expanded Cornflakes. Extruded, face cut.
 - Lowest capital expenditure and most simple process, but lowest quality product.

Conclusion

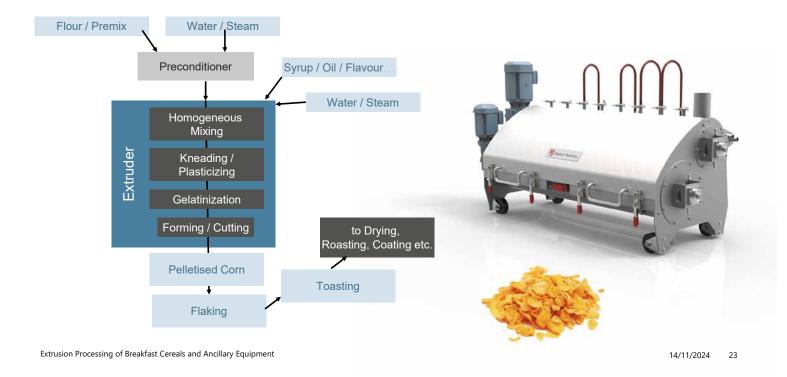
Three different cornflake production methods are possible. All have their pros and cons.

Extrusion Processing of Breakfast Cereals and Ancillary Equipment



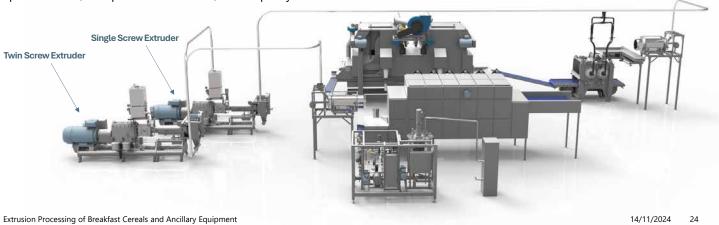

14/11/2024

Process Diagram: Traditional Cornflakes

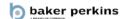


Process Diagram: Extruded Cornflakes

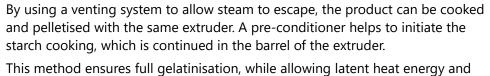
Two Extruder Method (Pelletised Cornflakes)

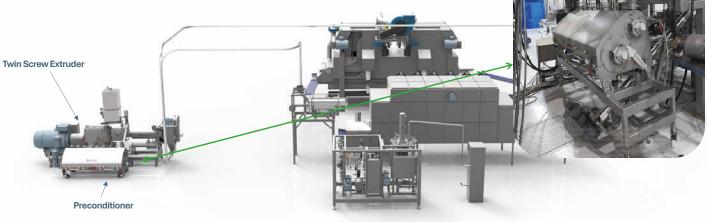

A twin-screw cooker-extruder is used to cook the material

It is then conveyed via pipe die (held under pressure) to a second, single screw forming extruder.


This gives time for heat escape the extrudate as it leaves the pipe die, and via cooling in the single screw extruder to prevent expansion of the pellet before flaking.

This is a good option for retrofitting to a system with an existing, shorter barrel twin screw extruder, with the addition of a single screw extruder


Space efficient, cheaper than traditional, better quality than DX.


Single Extruder Method (Pelletised Cornflakes)

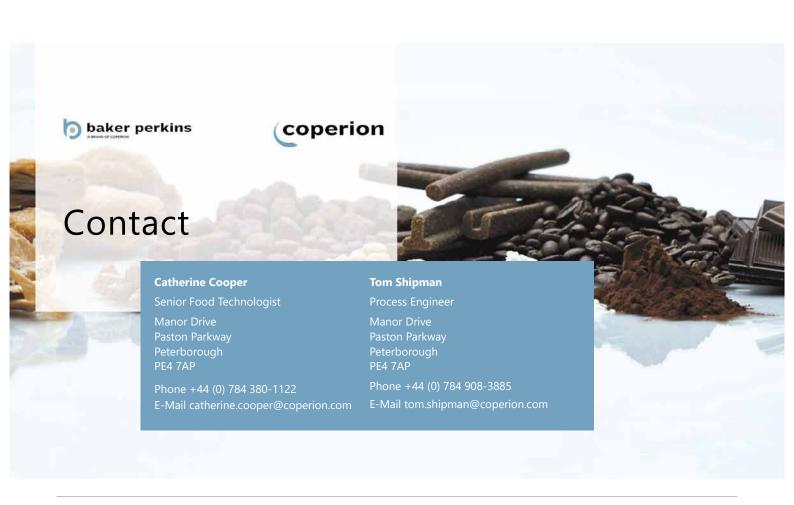
This method ensures full gelatinisation, while allowing latent heat energy and steam to escape, meaning that the product can be sufficiently cooled to allow atmospheric product release without puffing.

Extrusion Processing of Breakfast Cereals and Ancillary Equipment

14/11/2024

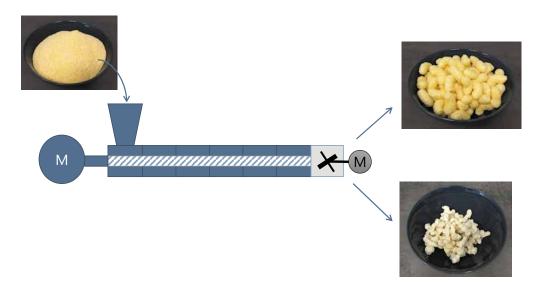
25

Process Diagram: Direct Expanded Cornflakes


(coperion

Extrusion Processing of Breakfast Cereals and Ancillary Equipment

14/11/2024



- 1 From raw material to product
- 2 Inside the process section
- 3 Power Torque SEI
- 4 Problem? Solution!
- 5 Discussion

 $\label{eq:Get_settings} \textbf{Get your settings right-The impact of extruder settings on the product properties}$

From raw material to the product

Raw material + thermal energy + mechanical energy = product

Get your settings right – The impact of extruder settings on the product properties

_

From raw material to the product

Process variables:

- Screw speed
- Throughput
- Water content
- Screw configuration
- Barrel temperatures
- Die configuration
- Recipe
- Raw material characteristics

Process parameters:

- Torque
- Shear (SME)
- Product temperature
- Mass pressure at die
- Residence time / distribution
- · Degree of fill
- Viscosity of mass

- Flavor
- Color
- Texture
- Density
- Expansion
- Shape
- . . .

Get your settings right – The impact of extruder settings on the product properties

_

From raw material to the product

Mutual dependencies in Extrusion

Extruder variables:

- Screw speed
- Throughput
- Water content
- Screw configuration
- Barrel temperatures
- Die configuration
- Recipe

Process parameters:

- Degree of fill
- Shear
- Torque
- Product temperature <</p>
- Mass pressure at die
- Residence time / distribution
- Viscosity of mass
- ...

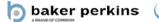
Product properties:

- Flavor
- Color
- Texture
- Density
- Expansion
- Shape
- •

Get your settings right – The impact of extruder settings on the product properties

5

(coperion


Inside the process section

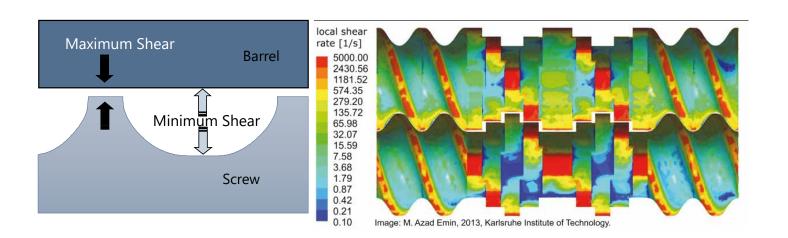
Degree of fill, residence time, pressure

baker perkins

Get your settings right – The impact of extruder settings on the product properties

Degree of fill inside of the screw channels

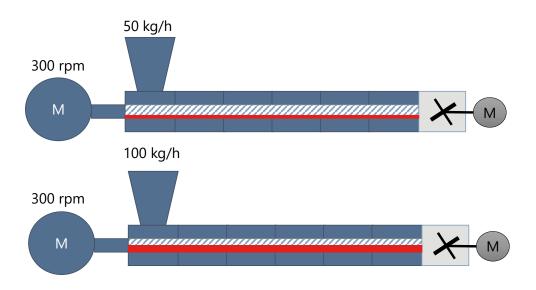
Direction of flow


Get your settings right – The impact of extruder settings on the product properties

.

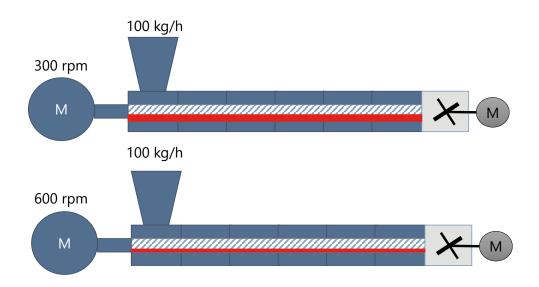
Inside the process section

Shear rate distribution



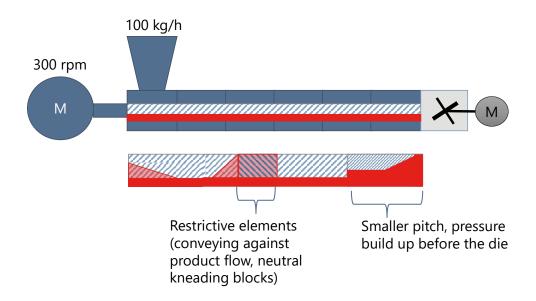
 $\label{eq:Get_general} \textbf{Get your settings right-The impact of extruder settings on the product properties}$

Throughput -> Degree of fill


Get your settings right – The impact of extruder settings on the product properties

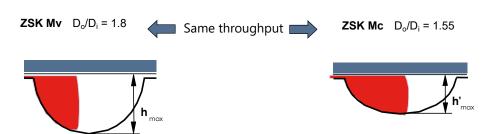
.

Inside the process section


Screw speed -> Degree of fill

 $\label{eq:Get_general} \textbf{Get your settings right-The impact of extruder settings on the product properties}$

Screw configuration -> Degree of fill



Get your settings right – The impact of extruder settings on the product properties

11

Inside the process section

D_o/D_i of Extruder -> Degree of fill

Advantages of higher D_o/D_i:

- Better intake
- Lower shear rate
- Lower product temperature
- Reduced product stress for sensitive products
- İmproved devolatilization

baker perkins (coperion

 $\label{eq:Get_settings} \textbf{Get your settings right-The impact of extruder settings on the product properties}$

Local degree of fill depends on

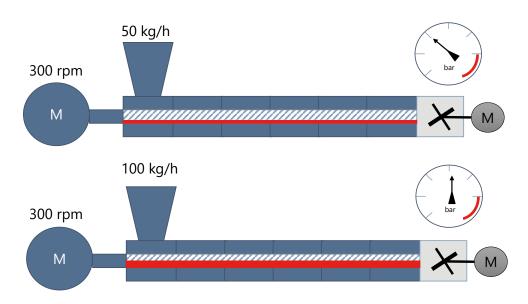
- Throughput
- Screw speed
- Local screw element (i.e., pitch)
- Downstream restrictions
- D_o / D_i of extruder
- Length of upstream filled section of restrictions

•••

Degree of fill influences

- · Heat transfer to barrel surface
- · Residence time
- Degassing
- · Shear and mixing capability

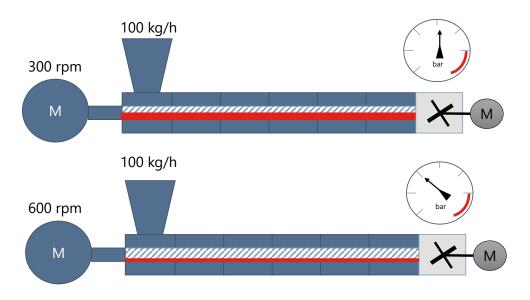
•••


Get your settings right – The impact of extruder settings on the product properties

13

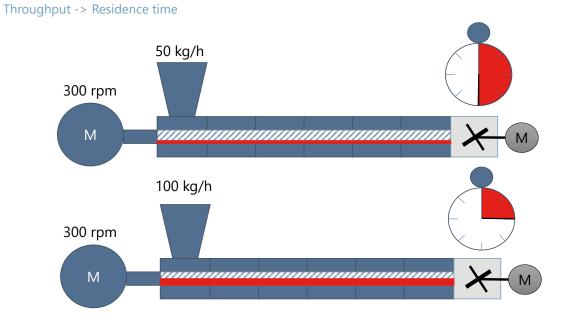
Inside the process section

Throughput -> melt pressure



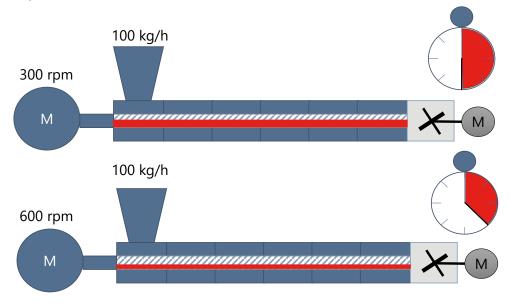
Get your settings right – The impact of extruder settings on the product properties

Screw speed -> melt pressure


Get your settings right – The impact of extruder settings on the product properties

15

Inside the process section



 $\label{eq:Get_general} \textbf{Get your settings right-The impact of extruder settings on the product properties}$

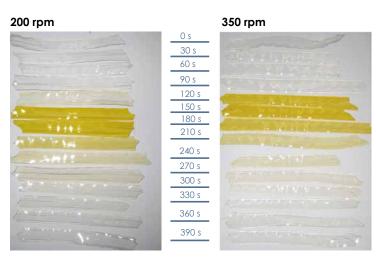
Screw speed -> Residence time

Get your settings right – The impact of extruder settings on the product properties

17

(coperion

baker perkins


Inside the process section

Residence time distribution

Residence time distribution depends on:

- Throughput: biggest influence
- Screw speed: smaller influence
- Screw set up (type of elements): big influence on residence time distribution
- Downstream restrictions (die)
- D_o / D_i of extruder

...

 $\Delta t = 30 s$

 $\label{eq:Get_general} \textbf{Get your settings right-The impact of extruder settings on the product properties}$

Power - Torque -SEI

If you want to test an extruders character, give it power

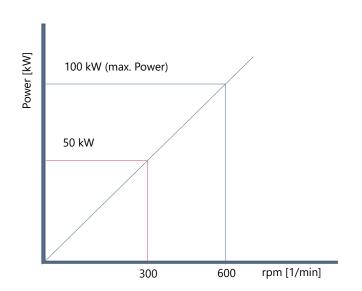
3

baker perkins

Get your settings right – The impact of extruder settings on the product properties

Power – Torque – SEI

Power (electric motor)


given Extruder:

max rpm: 600 1/min max power: 100 kW

Max power at 300 rpm: 50 kW

$$\max P_{N} = \max P_{mot} * \frac{N_{actual}}{N_{max}}$$

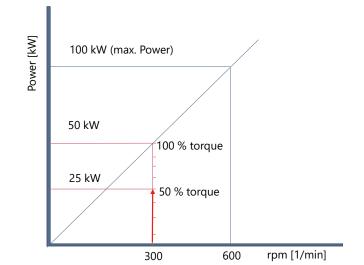
max
$$P_N = 100 \text{ kW} * \frac{300}{600} = 50 \text{ kW}$$

 $\label{eq:Get_general} \textbf{Get your settings right-The impact of extruder settings on the product properties}$

20

(coperion

Power - Torque - SEI



Torque

given Extruder: max rpm: 600 1/min max power: 100 kW

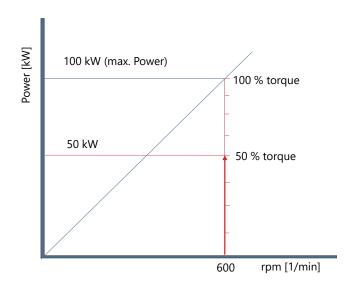
Torque: a rotational force Torque is displayed as % of max. motor power at the actual screw speed

Get your settings right – The impact of extruder settings on the product properties

Power - Torque - SEI

baker perkins

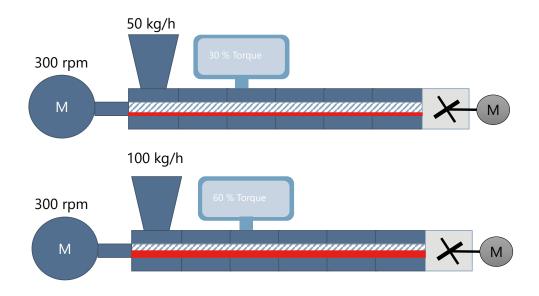

Torque


given Extruder:

max rpm: 600 1/min max power: 100 kW

Torque: a rotational force Torque is displayed as % of

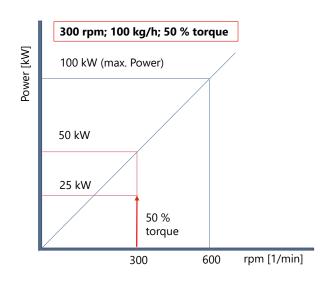
max. motor power



 $\label{eq:Get_general} \textbf{Get your settings right-The impact of extruder settings on the product properties}$

Power - Torque - SEI

Torque



 $\label{eq:Get_general} \textbf{Get your settings right-The impact of extruder settings on the product properties}$

23

Power – Torque – SEI

Specific mechanical energy (SME)

$$SME = \frac{Used\ power}{Throughput}$$

$$SME = \frac{25 \text{ kW}}{100 \text{ kg/h}}$$

$$SME = \frac{\left(\frac{3\ 0\ 0}{6\ 0\ 0}\ 1\,/\,s*\frac{5\ 0}{1\ 0\ 0}\right)*1\ 0\ 0\ k\ W}{100\ kg/h} \quad \left[\frac{kWh}{kg}\right] = 0,25\ kWh/kg$$

Get your settings right – The impact of extruder settings on the product properties

Power - Torque - SEI

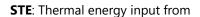
Specific mechanical energy (SME)

Torque of the screws (not energy uptake from motor)
Used energy (from the motor) by screws
Coperion Extruders show torque as % of maximum

$$\text{SME} = \frac{\left(\frac{n_{\text{act}}}{n_{\text{max}}} * \frac{M_{\text{act}}}{100}\right) - \left(\frac{n_{\text{act}}}{n_{\text{max}}} * \frac{M_{\text{empty}}}{100}\right)}{\dot{m}} * \text{Pmax} \ \left[\frac{kWh}{kg}\right]$$

$$SME = \frac{Md_{act} - Md_{empty}}{\dot{m}} * 3,6 \quad \left[\frac{kWh}{kg}\right]$$

n: Screw speed $\begin{bmatrix} min^{-1} \end{bmatrix} \\ M_{act}: actual Torque \\ M_{empty}: Torque of empty machine \\ P_{max}: max power proces section \\ \vdots \\ m: Throughput \\ [Kg/h]$


 $\begin{array}{ll} M\,d_{\,act} \colon & [Nm] \\ M\,d_{\,empty} \colon & [Nm] \\ \dot{m} \colon & [Kg/h] \end{array}$

Get your settings right - The impact of extruder settings on the product properties

25

Power - Torque - SEI

STE (Specific Thermal Energy (STE) and SEI (Specific Energy Intake)

- the barrels,
- · thermal energy from steam or warm water

The heat exchanging capabilities of an extruder are limited

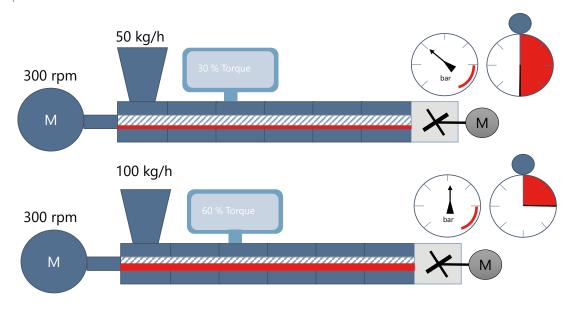
Ratio between volume / inner surface area gets bigger for bigger extruders

- less influence of heating/cooling
- be careful with settings on lab extruders if you want to scale up
- too hot barrels can lead to burned product

SEI = SME + STE

STE only important if strong heating or cooling is involved or if steam or hot water are used

baker perkins (coperion


For most processes only SME important

Get your settings right – The impact of extruder settings on the product properties

Power – Torque – SEI

Torque

 $\label{eq:Getyour settings} \textbf{Get your settings right-The impact of extruder settings on the product properties}$

27

Problem? Solution!

How to achieve the perfect product

 $\label{eq:Get_general} \textbf{Get your settings right-The impact of extruder settings on the product properties}$

Problem? Solution!

Start-up and Shut-down

Higher viscous material can always push lower viscous material through the extruder

Start-up: start lower viscosity (e.g., more water addition) and increase viscosity

Shut-down: reduce barrel temperatures below 100 °C (to prevent steam) Slowly decrease throughput, viscosity and rpm until the pressure is low

Get your settings right - The impact of extruder settings on the product properties

29

Problem? Solution!

Understanding the Problem

Product doesn't fit to requirements

- · Describe the deviations
- Know where you are coming from: (increasing rpm might help if the degree of cook is not sufficient, but it might lead to starch degradation and less expansion if it is already ok)
- · Take your time:
 - Wait at least 4 times the residence time after each
 - Only change one parameter at a time
- Practice makes perfect! Just try it! Check also the limits/ extremes of your process

Example: too less expansion

Pressure has the biggest impact on expansion:

- Increase throughput
- Decrease rpm
- Increase viscosity (reduce water addition)
- Change die configuration (more restriction)

This only applies if the product is theoretically able to expand more

Get your settings right – The impact of extruder settings on the product properties

Problem? Solution!

Starch based products

baker perkins coperion

How to achieve Popcorn?

Mechanical breakdown of the starch: high rpm, low moisture content, strong screw

How to achieve high cold paste viscosity?

Gentle process to protect the starch molecules:

- · High moisture content
- low rpm (or low shear screw)
- Use thermal energy (barrels, steam)

Get your settings right – The impact of extruder settings on the product properties

3

Problem? Solution!

Protein texturization / Reaction / Roasting

Too less texturized TVP:

- Increase the rpm for more shear (be aware of steam bursts and torn product due to higher temperatures and lower viscosity)
- Increase the barrel temperature (be aware of steam bursts and torn product or burned particles)
- · Add steam to bring in thermal energy
- · Change the screw for more shear at lower rpm
- · Change the recipe to achieve a higher viscosity at the same process settings

Reaction process:

Create enough mixing (screw configuration, screw speed) and enough residence time (throughput)

Roasting:

Low rpm and low throughput (creating residence time)

Get your settings right – The impact of extruder settings on the product properties

Discussion

Get your settings right – The impact of extruder settings on the product properties

Thank you very much for your attention.

You're very welcome to follow us.

Coperion GmbH

Theodorstraße 10 70469 Stuttgart Deutschland Tel: +49 711 897-0

info@coperion.com www.coperion.com

