# EFFICIENCY IN COMPOUNDING



# Rethinking Screw Element Designs to Deliver Improved Materials Throughputs and Quality

Marina Matta, B.Sc. Senior process engineer Coperion GmbH

> coperion confidence through partnership

#### Main Factors Limiting the Capacity



confidence through partnership











#### Screw elements for different process tasks







#### **Incorporation Problems**









Profile design based on circular arcs

Profile design based on different math. curves

- >> New design principle not following the Erdmenger patent
- >> Many new screw geometries possible with self cleaning profile







#### Simulation of Involute Screw Elements

ZSK 40 - 60 kg/h - 100 rpm – Pressure distribution (relative pressure [bar])



Coperion Extrusion Days I Efficiency in Compounding I 15.-16.11.18 I Page 10



EXTRUSION DAYS EFFICIENCY IN COMPOUNDING

### Impact of Screw Design

#### PP Compounds – ZSK 40



| Formulation                             | Max. throughput<br>standard screw<br>profile (kg/h) | Max. throughput<br>new screw profile<br>(Involute) (kg/h) | Throughput<br>increase<br>[%] |   |  |  |  |
|-----------------------------------------|-----------------------------------------------------|-----------------------------------------------------------|-------------------------------|---|--|--|--|
| PP + 55 % Talc                          | 180                                                 | 220                                                       | + 22%                         |   |  |  |  |
| PP + 70% CaCO <sub>3</sub>              |                                                     | 250                                                       | + 38%                         |   |  |  |  |
| Breathable film- ZSK 40                 |                                                     |                                                           |                               |   |  |  |  |
| Formulation                             | Max. throughput<br>standard screw<br>profile (kg/h) | Max. throughput<br>new screw profile<br>(Involute) (kg/h) | Throughput<br>increase<br>[%] |   |  |  |  |
| LLDPE (MI 6)<br>+ 45% CaCO <sub>3</sub> | 200                                                 | 350                                                       | +75%                          | 2 |  |  |  |
| LLDPE (MI 6)<br>+ 70% CaCO <sub>3</sub> | 235                                                 | 400                                                       | + 70%                         |   |  |  |  |



#### Involute Screw Profile



#### Filled PP/PE compounds (Masterbatch) – ZSK 40

| Formulation                                                                               | Max. Rate<br>Standard-Screw<br>profile (kg/h)                       | Max. Rate New<br>Screw profile<br>(Involute) (kg/h)               | Increase<br>[%]           | 83 |
|-------------------------------------------------------------------------------------------|---------------------------------------------------------------------|-------------------------------------------------------------------|---------------------------|----|
| LLDPE (MI 20)<br>+ 28% TiO2 + 42% CaCO <sub>3</sub><br>PP (MI 12) + 70% CaCO <sub>3</sub> |                                                                     |                                                                   | + 160%<br>+ 125%          |    |
| Automotive PP grades – Z<br>Formulation                                                   | <b>SK 49nfiden</b><br>Max. Rate<br>Standard-Screw<br>profile (kg/h) | Ce through<br>Max. Rate New<br>Screw profile<br>(Involute) (kg/h) | partne<br>Increase<br>[%] |    |
| PP + 71% Talc                                                                             | 140                                                                 | 220                                                               | +57%                      |    |
| PP + Elastomer + 70% Talc                                                                 | 130                                                                 | 200                                                               | +46%                      |    |



Involute Elements - Influence on Dispersion Quality



LDPE + 70% Tio<sub>2</sub>, 30% Masterbatch diluted in the film

Optimized screw Optimized screw **Not** optimized screw configuration - standard configuration - new configuration elements involute elements confidence through partnership ()



#### **Feed Intake Problems**





EXTRUSION DAYS EFFICIENCY IN COMPOUNDING

### Feed Enhancement Technology



- **FET**: Technology to increase the throughput of feed limited products
- Solids conveying is improved by applying vacuum in the feed zone to a wall section which is porous and permeable to gas.
  - This wall section is realized by an insert with a filter membrane installed in an open fiden through performed barrel.



۲



Already more than 150 ZSK equipped with FET



### Feed Enhancement Technology Working Principle



Solids conveying is improved by applying **vacuum** in the feed zone to a wall section which is porous and permeable to gas.



- Effects:  $\Rightarrow$  air is removed  $\rightarrow$  higher bulk density
  - >> friction is changed in the area of insert



#### Feed Enhancement Technology Working Principle

#### FET Off: Conveying angle ~ 20°



#### FET On: Conveying angle ~ 40°







#### **Flow Direction**









- >> ZSK 50 PET + 20% synthetic SiO<sub>2</sub>
- >> PET = shear sensitive polymer  $\rightarrow$  low screw speed
- >> Synthetic SiO2 = low bulk density, feed intake limitation  $\rightarrow$  high screw speed







- >> Increased throughput by split-feed of SiO2 with two side feeders
- >> Increased iV due to higher degree of fill, lowered dispersion due to split-feed
- >> Still feed-intake limitation







- >> Considerbly increased throughput by using FET with only one side feeder
- >> Considerably increased iV due to higher degree of fill, good dispersion
- >> No feed-intake limitation, torque limit reached



- >> Highest throughput by using FET
- >> Best quality in terms of intrinsic viscosity (iV) and dispersion by using FET
- >> Lowest specific energy (SEI) input by using FET





- >> Considerbly increased throughput by using FET with only one side feeder
- >> Considerably increased iV due to higher degree of fill, good dispersion
- >> No feed-intake limitation, torque limit reached



- >> Highest throughput by using FET
- >> Best quality in terms of intrinsic viscosity (iV) and dispersion by using FET
- >> Lowest specific energy (SEI) input by using FET





Test results on a ZSK 40







## Summary

#### >> New Involute Elements

- higher throughput
- higher loadings of filler
- better dispersion and homogenization
- lower energy consumption (SEI in kWh/kg)

#### >> Feed Enhancement Technlogy

- higher throughput
- Higher loadings of filler
- lower energy consumption (SE1 in kWh/kg)

#### >> High motor power

- higher throughput
- Improved compounding quality by gentle processing with a higher filling degree



- $\rightarrow$  > 30% for filled polymers
- $\rightarrow$  physical limitation can be reached
- $\rightarrow$  FPV lowered, better film results
- $\rightarrow$  10 20 K lower temperature

 $\rightarrow$  > 200% increase possible

The theorem is the second sec



# Thank you very much for your attention!



This document and all contributions and illustrations contained there in are protected by copyright. Any use there of beyond the scope of the copyright without editor's prior written consent is illegal and will be prosecuted. This shall in particular apply to translations, eproductions, micro filming and processing in electronic systems.

