Q. How does the K3 differ from other alternatives?
A. We’ve talked about the pendulum shock-absorber technology. There is nothing like this on the market.
What we haven’t talked about is the hygienic design. We have a device that needs to vibrate. Usually to allow these vibrations, you have gaps. But for hygienic environments you try to avoid gaps. We designed a silicone boot, which covers the whole drive. There are no gaps. It is completely enclosed.
Another is the controller itself. It is a closed-loop control. We measure the motion 1,500 times per second. And by measuring the motion, we can adapt the excitation signal of the coil in real time. Others do not measure any vibration, they only increase the signal or lower it. We measure the motion and compare it to the excitation and then we see if we are in resonance, and we drive our vibratory in resonance frequency. Most of the devices on the market avoid resonance frequency. For example, if you are on a swing and you are moving in the right frequency, with a little motion you get a big oscillation. This means you’re in resonance. But if you move in a much faster frequency, you get almost no oscillation.
We measure the current 25,000 times per second and make adjustments to ensure a clean sine curve and very smooth motion. This reduces noise and vibration. Compared to other devices, which are pretty simple, it’s very complicated, but it gives us a lot of controllability as well as efficiency.
To give you an example, we measured power consumption at a feed rate of 12,566 pounds (5,700 kilograms) an hour. We used only 20 watts of power to feed that amount. That’s a third of a light bulb. Because we drive it in resonance, we only need a little bit of energy to keep it moving.
Q. Anything you’d like to add?
A. We should talk about the weighing technology, which is a core competence of our company. We build our own scales and controls. If you apply more force to the scale, the vibrating wire is more loaded and the resonance frequency increases. By measuring this resonance frequency, we know how much weight is on the scale.
Something else we haven’t discussed is pressure in the system. Pressure fluctuations can seriously impact the weighing accuracy of a feeding system. This leads to incorrect weight signals, causing erroneous mass flow and poor feeding accuracy. We’ve developed EPC electronic pressure compensation. We measure the pressure on the outlet and in the hopper. And if the pressure changes, we compensate this error on the scale electronically.
Coperion K-Tron has dozens of patents for mechanical components and control technologies to our feeding and weighing solutions. This experience allows us to tailor our products and services to the needs of various industries.